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U⊗n

▶ Fidelity for each U : ⟨F (U)⟩ =
∫
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U⊗n

▶ Fidelity for each U : ⟨F (U)⟩ =
∫
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|⟨⟨U |Û⟩⟩|2
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Û p(Û |U) F (U, Û)

▶ For a probe state ϕest and POVM {MÛ}Û :
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Michał Studziński, Sergii Strelchuk, Marek Mozrzymas, Michał Horodecki
Port-based teleportation in arbitrary dimension, Sci Rep. (2017)

M. Sedlák, A. Bisio, and M. Ziman,
Optimal Probabilistic Storage and Retrieval of Unitary Channels, PRL (2019)

pPBT(d,N) = pSAR(d,N) = 1− d2 − 1

N + d2 − 1
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The proof is constructive (and covariant).
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Bonus result:
For n ≤ d− 1 calls,
FPAR

inv (n, d) = F SEQ
inv (n, d) = FGEN

inv (n, d) = n+1
d2

.
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Thank you!


