One-to-one correspondence between deterministic port-based teleportation and unitary estimation

Satoshi Yoshida, Yuki Koizumi, Michał Studziński, Marco Túlio Quintino, Mio Murao

Sorbonne Université, CNRS, LIP6

QPL: July 17, 2025

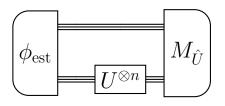
arXiv:2408.11902 (2024)

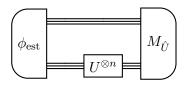
► Unitary estimation

- ► Unitary estimation
- ► Deterministic Port-Based Teleportation (dPBT)

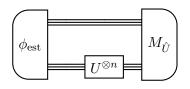
- Unitary estimation
- Deterministic Port-Based Teleportation (dPBT)
- Deterministic unitary storage-and-retrieval (dSAR)

- Unitary estimation
- Deterministic Port-Based Teleportation (dPBT)
- Deterministic unitary storage-and-retrieval (dSAR)
- ► Parallel unitary inversion/ parallel unitary transposition (Inv_{par})



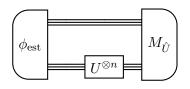


▶ Fidelity for each U: $\langle F(U) \rangle = \int_{\hat{U}} p(\hat{U}|U) \ F(U,\hat{U})$



- ▶ Fidelity for each U: $\langle F(U) \rangle = \int_{\hat{U}} p(\hat{U}|U) \ F(U,\hat{U})$
- ▶ For a probe state $\phi_{\rm est}$ and POVM $\{M_{\hat{U}}\}_{\hat{U}}$:

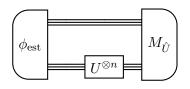
$$p(\hat{U}|U) := \operatorname{tr} \bigg(\Big(U^{\otimes k} \otimes \mathbb{1} \Big) \, \phi_{\mathsf{est}} \, \Big(U^{\otimes k} \otimes \mathbb{1} \Big)^{\dagger} \, \, M_{\hat{U}} \bigg)$$



- ▶ Fidelity for each U: $\langle F(U) \rangle = \int_{\hat{U}} p(\hat{U}|U) \ F(U,\hat{U})$
- For a probe state $\phi_{\rm est}$ and POVM $\{M_{\hat{U}}\}_{\hat{U}}$:

$$p(\hat{U}|U) := \operatorname{tr} \bigg(\Big(U^{\otimes k} \otimes \mathbb{1} \Big) \, \phi_{\mathsf{est}} \, \Big(U^{\otimes k} \otimes \mathbb{1} \Big)^{\dagger} \, \, M_{\hat{U}} \bigg)$$

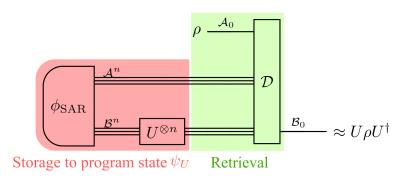
▶ Unitary channel fidelity: $F(U, \hat{U}) := \frac{\left|\langle\!\langle U | \hat{U} \rangle\!\rangle\right|^2}{d^2} = \frac{\left|\operatorname{tr}\left(U^\dagger \hat{U}\right)\right|^2}{d^2}$

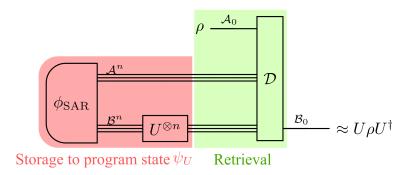


- ▶ Fidelity for each U: $\langle F(U) \rangle = \int_{\hat{U}} p(\hat{U}|U) \ F(U,\hat{U})$
- For a probe state $\phi_{\rm est}$ and POVM $\{M_{\hat{U}}\}_{\hat{U}}$:

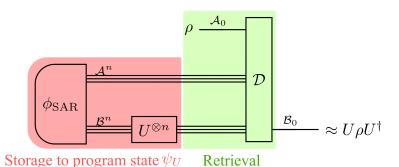
$$p(\hat{U}|U) := \operatorname{tr} \bigg(\Big(U^{\otimes k} \otimes \mathbb{1} \Big) \, \phi_{\mathsf{est}} \, \Big(U^{\otimes k} \otimes \mathbb{1} \Big)^{\dagger} \, \, M_{\hat{U}} \bigg)$$

- ▶ Unitary channel fidelity: $F(U, \hat{U}) := \frac{\left|\langle\!\langle U | \hat{U} \rangle\!\rangle\right|^2}{d^2} = \frac{\left|\operatorname{tr}\left(U^\dagger \hat{U}\right)\right|^2}{d^2}$
- ▶ Hence, we want to maximize the fidelity $\int_U \langle F(U) \rangle$, or to maximise the worst case fidelity $\inf_U \langle F(U) \rangle$.

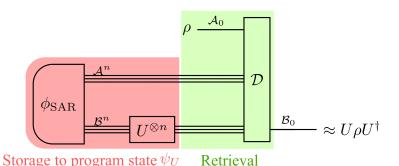




▶ For a state ϕ_{SAR} and decoder channel \mathcal{D} : $\mathcal{C}(\rho) := \mathcal{D}(\rho \otimes \psi_U)$



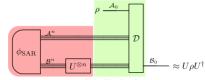
- ▶ For a state ϕ_{SAR} and decoder channel \mathcal{D} : $\mathcal{C}(\rho) := \mathcal{D}(\rho \otimes \psi_U)$
- ▶ Channel fidelity: $F(U, \mathcal{C}) := \frac{\langle\!\langle U|C|U\rangle\!\rangle}{d^2} = \frac{\sum_i \left|\operatorname{tr}\left(U^\dagger K_i\right)\right|^2}{d^2}$



- ▶ For a state ϕ_{SAR} and decoder channel \mathcal{D} : $\mathcal{C}(\rho) := \mathcal{D}(\rho \otimes \psi_U)$
- ▶ Channel fidelity: $F(U, \mathcal{C}) := \frac{\langle\!\langle U|C|U\rangle\!\rangle}{d^2} = \frac{\sum_i \left|\operatorname{tr}\left(U^\dagger K_i\right)\right|^2}{d^2}$
- ▶ Hence, we want to maximize the fidelity $\int_U F(U, \mathcal{C})$, or to maximise the worst case fidelity $\inf_U (U, \mathcal{C})$.

$Est \Longrightarrow dSAR$

Storage and retrieval of unitary operation

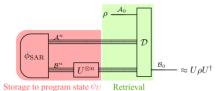


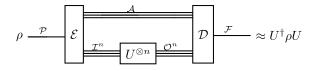
Storage to program state ψ_U Retrieval

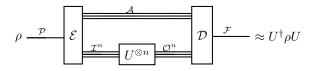
$dSAR \Longrightarrow Est$

Unitary estimation $\phi_{\rm est} = \frac{A^n}{U^{\otimes n}} M_{\hat{U}}$ $F_{\rm est}(n,d) = F_{\rm SAR}(n,d)$ [Bisio et al. 2010]

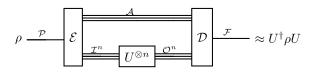
Storage and retrieval of unitary operation



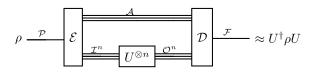




▶ For an encoder channel \mathcal{E} and decoder channel \mathcal{D} : $\mathcal{C} := \mathcal{D} \circ (\mathcal{I} \otimes \mathcal{U})^{\otimes n} \circ \mathcal{E}$



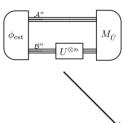
- ► For an encoder channel \mathcal{E} and decoder channel \mathcal{D} : $\mathcal{C} := \mathcal{D} \circ (\mathcal{I} \otimes \mathcal{U})^{\otimes n} \circ \mathcal{E}$
- ► Channel fidelity: $F(U, \mathcal{C}) := \frac{\langle\!\langle U|C|U\rangle\!\rangle}{d^2} = \frac{\sum_i \left|\operatorname{tr}\left(U^{\dagger}K_i\right)\right|^2}{d^2}$



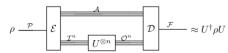
- ► For an encoder channel \mathcal{E} and decoder channel \mathcal{D} : $\mathcal{C} := \mathcal{D} \circ (\mathcal{I} \otimes \mathcal{U})^{\otimes n} \circ \mathcal{E}$
- ▶ Channel fidelity: $F(U, \mathcal{C}) := \frac{\langle\!\langle U|C|U\rangle\!\rangle}{d^2} = \frac{\sum_i \left|\operatorname{tr}\left(U^{\dagger}K_i\right)\right|^2}{d^2}$
- ▶ Hence, we want to maximize the fidelity $\int_U F(U^\dagger, \mathcal{C})$, or to maximise the worst case fidelity $\inf_U (U^\dagger, \mathcal{C})$.

$\mathsf{Est} \Longrightarrow \, \mathsf{Inv}_{\mathsf{par}}$

Unitary estimation

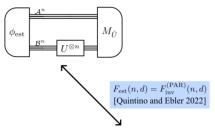


Parallel unitary inversion

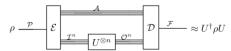


$Inv_{par} \Longrightarrow Est$

Unitary estimation

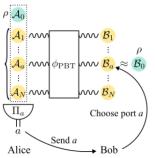


Parallel unitary inversion



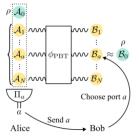
Deterministic Port-Based Teleportation(dPBT)

Deterministic port-based teleportation (dPBT)

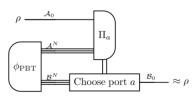


Deterministic Port-Based Teleportation(dPBT)

Deterministic port-based teleportation (dPBT)



Quantum circuit for dPBT



$dPBT \Longrightarrow dSAR$

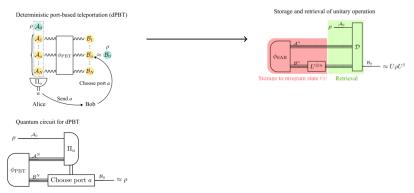
 Π_a

Choose port a

 ϕ_{PBT}

Deterministic port-based teleportation (dPBT) Storage and retrieval of unitary operation PAO PAO PAO PAO PAO PAO Retrieval Storage to program state & Retrieval Quantum circuit for dPBT Quantum circuit for dPBT

$dSAR \Longrightarrow dPBT$?



Does the converse hold?

$$dSAR \implies dPBT$$
?

For the probabilistic case, yes.

$dSAR \Longrightarrow dPBT$?

For the probabilistic case, yes. Michał Studziński, Sergii Strelchuk, Marek Mozrzymas, Michał Horodecki Port-based teleportation in arbitrary dimension, Sci Rep. (2017)

M. Sedlák, A. Bisio, and M. Ziman, Optimal Probabilistic Storage and Retrieval of Unitary Channels, PRL (2019)

$$p_{\mathsf{PBT}}(d,N) = p_{\mathsf{SAR}}(d,N) = 1 - \frac{d^2 - 1}{N + d^2 - 1}$$

$dSAR \Longrightarrow dPBT$?

Main result:

Given an n-call unitary estimation with fidelity F(n,d), there exists an n+1 ports dPBT with fidelity F(n,d), vice versa

Main result:

Given an n-call unitary estimation with fidelity F(n,d), there exists an n+1 ports dPBT with fidelity F(n,d), vice versa

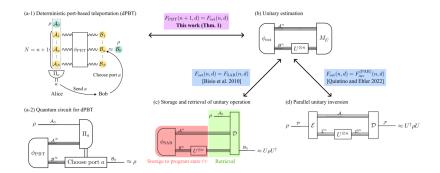
In other words: $F_{\mathsf{Est}}(n,d) = F_{\mathsf{dPBT}}(n+1,d)$.

Main result:

Given an n-call unitary estimation with fidelity F(n,d), there exists an n+1 ports dPBT with fidelity F(n,d), vice versa

In other words: $F_{\mathsf{Est}}(n,d) = F_{\mathsf{dPBT}}(n+1,d)$.

The proof is constructive (and covariant).

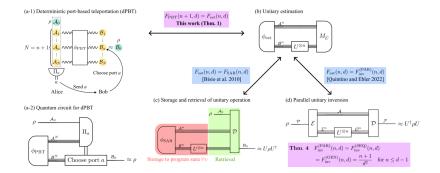


$$n \leq d - 1$$

Bonus result:

For $n \leq d-1$ calls, $F_{\mathrm{inv}}^{\mathrm{PAR}}(n,d) = F_{\mathrm{inv}}^{\mathrm{SEQ}}(n,d) = F_{\mathrm{inv}}^{\mathrm{GEN}}(n,d) = \frac{n+1}{d^2}.$

$n \leq d-1$



Applications

▶ We can now import results from one field to another

- ▶ We can now import results from one field to another
- ► M. Christandl et al, CMP (2021)

$$1 - O\left(\frac{d^5}{n^2}\right) \leq F_{\mathsf{PBT}}(n,d) \leq 1 - \Omega\left(\frac{d^2}{n^2}\right)$$

- ▶ We can now import results from one field to another
- ► M. Christandl et al, CMP (2021)

$$1 - O\left(\frac{d^5}{n^2}\right) \le F_{\mathsf{PBT}}(n, d) \le 1 - \Omega\left(\frac{d^2}{n^2}\right)$$

Y. Yang, R. Renner, and G. Chiribella, PRL (2020)

$$1 - O\left(\frac{d^4}{n^2}\right) \le F_{\mathsf{Est}}(n, d)$$

- We can now import results from one field to another
- M. Christandl et al, CMP (2021)

$$1 - O\left(\frac{d^5}{n^2}\right) \leq F_{\mathsf{PBT}}(n,d) \leq 1 - \Omega\left(\frac{d^2}{n^2}\right)$$

Y. Yang, R. Renner, and G. Chiribella, PRL (2020)

$$1 - O\left(\frac{d^4}{n^2}\right) \le F_{\mathsf{Est}}(n, d)$$

▶ J. Haah et al, FOCS (2023) + some tricks

$$F_{\mathsf{Est}}(n,d) \le 1 - \Omega\left(\frac{d^4}{n^2}\right)$$

- We can now import results from one field to another
- ► M. Christandl et al, CMP (2021)

$$1 - O\left(\frac{d^5}{n^2}\right) \leq F_{\mathsf{PBT}}(n,d) \leq 1 - \Omega\left(\frac{d^2}{n^2}\right)$$

Y. Yang, R. Renner, and G. Chiribella, PRL (2020)

$$1 - O\left(\frac{d^4}{n^2}\right) \le F_{\mathsf{Est}}(n, d)$$

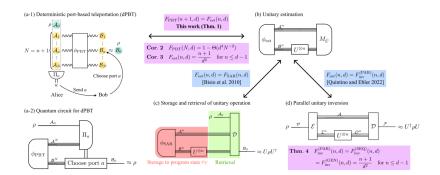
▶ J. Haah et al, FOCS (2023) + some tricks

$$F_{\mathsf{Est}}(n,d) \le 1 - \Omega\left(\frac{d^4}{n^2}\right)$$

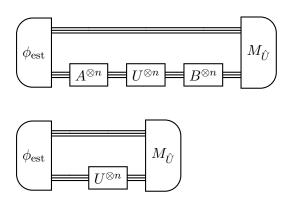
It follows from our main result that:

$$F_{\mathsf{PBT}}(n,d) = 1 - \Theta\left(\frac{d^4}{n^2}\right)$$

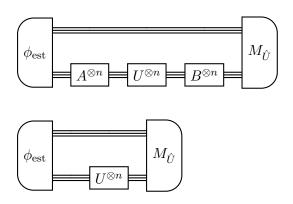
Main results



▶ In Est, we can assume covariance w.l.g., $\forall A, B, \in SU(d)$



▶ In Est, we can assume covariance w.l.g., $\forall A, B, \in \mathsf{SU}(d)$



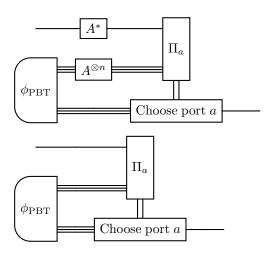
Performance of covariant protocols:

$$F_{\mathsf{Est}}(n,d) = \langle s | M_{\mathsf{Est}}(n,d) | s \rangle$$

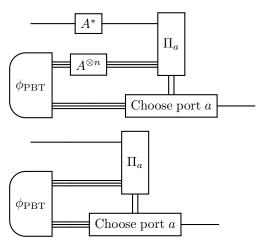
E. Bagan, M. Baig, and R. Muñoz-Tapia, PRA (2004)



▶ In dPBT, we can assume covariance w.l.g., $\forall A, \in SU(d)$



▶ In dPBT, we can assume covariance w.l.g., $\forall A, \in SU(d)$



M. Mozrzymas at al. NJP (2018) :

$$F_{\mathsf{PBT}}(n,d) = \langle v | M_{\mathsf{PBT}}(n,d) | v \rangle$$

"A retangular matrix decomposition"
 M. Mozrzymas at al. NJP (2018)

$$M_{\mathsf{PBT}}(n+1,d) = R(n,d)^T R(n,d)$$

"A retangular matrix decomposition"
 M. Mozrzymas at al. NJP (2018)

$$M_{\mathsf{PBT}}(n+1,d) = R(n,d)^T R(n,d)$$

▶ We show that

$$M_{\mathsf{Est}}(n,d) = R(n,d)R(n,d)^T$$

"A retangular matrix decomposition"
 M. Mozrzymas at al. NJP (2018)

$$M_{\mathsf{PBT}}(n+1,d) = R(n,d)^T R(n,d)$$

► We show that

$$M_{\mathsf{Est}}(n,d) = R(n,d)R(n,d)^T$$

▶ If $|v\rangle$ is a strategy for PBT(n+1,d), define $|s\rangle:=\frac{R(n,d)|v\rangle}{\|R(n,d)|v\rangle\|}$, a valid Est(n,d) strategy.

"A retangular matrix decomposition"
 M. Mozrzymas at al. NJP (2018)

$$M_{\mathsf{PBT}}(n+1,d) = R(n,d)^T R(n,d)$$

▶ We show that

$$M_{\mathsf{Est}}(n,d) = R(n,d)R(n,d)^T$$

- ▶ If $|v\rangle$ is a strategy for PBT(n+1,d), define $|s\rangle:=\frac{R(n,d)|v\rangle}{\|R(n,d)|v\rangle\|}$ a valid Est(n,d) strategy.
- ▶ Since $|s\rangle\langle s| \le 1$, it holds that

$$\langle s | M_{\mathsf{Est}}(n,d) | s \rangle \le \langle v | M_{\mathsf{PBT}}(n+1,d) | v \rangle$$

"A retangular matrix decomposition"
 M. Mozrzymas at al. NJP (2018)

$$M_{\mathsf{PBT}}(n+1,d) = R(n,d)^T R(n,d)$$

► We show that

$$M_{\mathsf{Est}}(n,d) = R(n,d)R(n,d)^T$$

- ▶ If $|v\rangle$ is a strategy for PBT(n+1,d), define $|s\rangle:=\frac{R(n,d)|v\rangle}{\|R(n,d)|v\rangle\|}$ a valid Est(n,d) strategy.
- ▶ Since $|s\rangle\langle s| \le 1$, it holds that

$$\langle s | M_{\mathsf{Est}}(n,d) | s \rangle \le \langle v | M_{\mathsf{PBT}}(n+1,d) | v \rangle$$

Analogously,

$$\langle s | M_{\mathsf{Est}}(n, d) | s \rangle \ge \langle v | M_{\mathsf{PBT}}(n + 1, d) | v \rangle$$



We have a one-to-one correspondence between unitary estimation with n calls to deterministic port-based teleportation with n+1 ports.

- We have a one-to-one correspondence between unitary estimation with n calls to deterministic port-based teleportation with n+1 ports.
- ▶ This correspondence is explicit, and covariant by construction.

- We have a one-to-one correspondence between unitary estimation with n calls to deterministic port-based teleportation with n+1 ports.
- ▶ This correspondence is explicit, and covariant by construction.
- Covariant protocol may require more resources than non-covariant one (e.g. larger auxiliary space (larger memory))

- We have a one-to-one correspondence between unitary estimation with n calls to deterministic port-based teleportation with n+1 ports.
- ▶ This correspondence is explicit, and covariant by construction.
- Covariant protocol may require more resources than non-covariant one (e.g. larger auxiliary space (larger memory))
- ▶ How does Est and dPBT relate if we consider such resources?

- We have a one-to-one correspondence between unitary estimation with n calls to deterministic port-based teleportation with n+1 ports.
- ▶ This correspondence is explicit, and covariant by construction.
- Covariant protocol may require more resources than non-covariant one (e.g. larger auxiliary space (larger memory))
- ▶ How does Est and dPBT relate if we consider such resources?
- Why? $F_{\mathsf{Est}}(n,d) = F_{\mathsf{dPBT}}(n+1,d)$

Thank you!

