All incompatible measurements on qubits lead to multiparticle Bell nonlocality

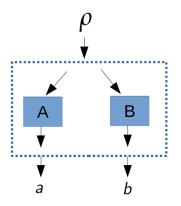
Martin Plávala, Otfried Gühne, Marco Túlio Quintino

Sorbonne Université, CNRS, LIP6

QPL: July 15, 2025

Phys. Rev. Lett. 134, 200201 (2025)

Measurement incompatibility

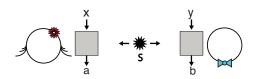


Quantum entanglement

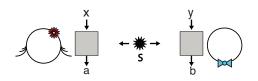
$$ho_{AB}
eq \int \pi(\lambda)
ho_A^{\lambda} \otimes
ho_B^{\lambda} d\lambda$$

State+Measurement

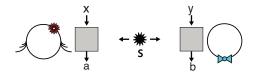
$$p(i|\rho, \{M_i\}_i) = \operatorname{tr}(\rho M_i)$$



$$p(ab|xy) = \operatorname{tr}(\rho_{AB}A_{a|x} \otimes B_{b|y})$$

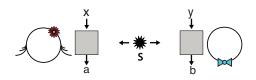


$$p(ab|xy) = \operatorname{tr}(\rho_{AB}A_{a|x} \otimes B_{b|y})$$
$$p(ab|xy) \neq \sum_{\lambda} \pi(\lambda)p_{A}(a|x,\lambda)p_{B}(b|y,\lambda)$$



$$p(ab|xy) \neq \sum_{\lambda} \pi(\lambda) p_A(a|x,\lambda) p_B(b|y,\lambda)$$

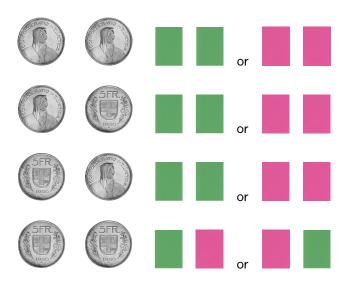
Bell NL \implies Entanglement + Measurement incompatibility



$$p(ab|xy) \neq \sum_{\lambda} \pi(\lambda) p_A(a|x,\lambda) p_B(b|y,\lambda)$$

 $\begin{array}{ll} \text{Bell NL} \implies \text{Entanglement} + \text{Measurement incompatibility} \\ \text{Bell NL} & \stackrel{?}{\longleftarrow} & \text{Entanglement} + \text{Measurement incompatibility} \\ \end{array}$

Winning Conditions



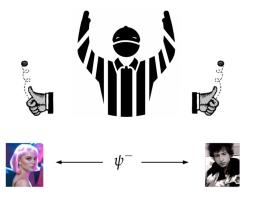
Best Strategy

Can Alice and Bob always win?

Best Strategy

Best (classical) strategy wins with probability $\frac{3}{4}$

Quantum Strategy

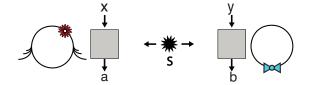


Quantum Strategy

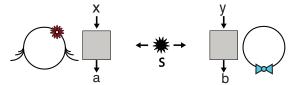
$$p_q = \frac{2 + \sqrt{2}}{4} \approx 0.8535$$

$$\psi^- \longrightarrow \psi^-$$

$$p_{\text{win}} = \sum_{abxy} \pi(x, y) V(ab|xy) p(ab|xy)$$



$$p(ab|xy) \neq \sum_{\lambda} \pi(\lambda) p_A(a|x,\lambda) p_B(b|y,\lambda)$$



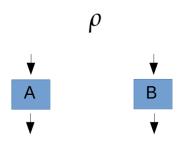
Quantum measurement

Quantum measurement: POVM

$$p(a|\rho, A) = \operatorname{tr}(\rho A_a)$$

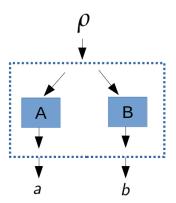
$$A = \{A_a\}, \quad A_a \ge 0, \quad \sum_a A_a = I$$

Measurement compatibility



Measurement compatibility

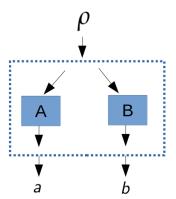
Joint measurability



Joint Measurability

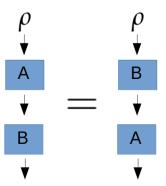
 $\{A_a\}$ and $\{B_b\}$ are JM if there exists a measurement $\{M_{ab}\}$ s. t.:

$$\sum_{a} M_{ab} = B_b$$
$$\sum_{b} M_{ab} = A_a$$



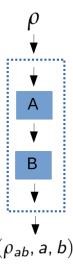
Measurement compatibility

Commuting measurements



Measurement compatibility

Commutation \implies measurement compatibility



Joint Measurability

The set of measurements $A_{a|x}$ is JM if there exists a single measurement $\{M_{\lambda}\}$ and a classical post-processing $p(a|x,\lambda)$ s. t.:

$$M_{a|x} = \sum_{\lambda} p(a|x,\lambda) E_{\lambda}$$

Joint Measurability

The set of measurements $A_{a|x}$ is JM if there exists a single measurement $\{M_{\lambda}\}$ and a classical post-processing $p(a|x,\lambda)$ s. t.:

$$M_{a|x} = \sum_{\lambda} p(a|x,\lambda) E_{\lambda}$$

Pauli Measurements

$$\sigma_Z:\{|0\rangle\langle 0|, |1\rangle\langle 1|\} \quad \sigma_X:\{|+\rangle\langle +|, |-\rangle\langle -|\}$$

Noise Pauli Measurements

$$\sigma_{Z,\eta}:\left\{\eta\left|0\right\rangle\!\!\left\langle 0\right|+(1-\eta)\frac{I}{2}\;;\qquad\eta\left|1\right\rangle\!\!\left\langle 1\right|+(1-\eta)\frac{I}{2}\right\}$$

Noise Pauli Measurements

$$\sigma_{Z,\eta}: \left\{ \eta \, |0\rangle\!\langle 0| + (1-\eta)\frac{I}{2} \; ; \qquad \eta \, |1\rangle\!\langle 1| + (1-\eta)\frac{I}{2} \right\}$$

$$\sigma_{X,\eta}: \left\{ \eta \, |+\rangle\!\langle +| + (1-\eta)\frac{I}{2} \; ; \qquad \eta \, |-\rangle\!\langle -| + (1-\eta)\frac{I}{2} \right\}$$

Noise Pauli Measurements

$$\begin{split} \sigma_{Z,\eta} : \left\{ \eta \, |0\rangle\!\langle 0| + (1-\eta)\frac{I}{2} \, ; & \eta \, |1\rangle\!\langle 1| + (1-\eta)\frac{I}{2} \right\} \\ \sigma_{X,\eta} : \left\{ \eta \, |+\rangle\!\langle +| + (1-\eta)\frac{I}{2} \, ; & \eta \, |-\rangle\!\langle -| + (1-\eta)\frac{I}{2} \right\} \\ \eta & \leq \frac{1}{\sqrt{2}} \implies \text{Joint Measurability} \end{split}$$

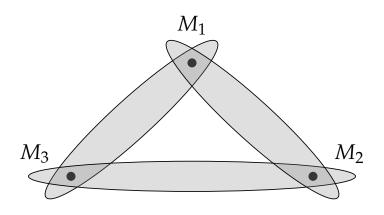
Hollow Triangle

$$\begin{split} \sigma_{Z,\eta} : & \left\{ \eta \, |0\rangle\!\langle 0| + (1-\eta)\frac{I}{2} \, ; & \eta \, |1\rangle\!\langle 1| + (1-\eta)\frac{I}{2} \right\} \\ \sigma_{X,\eta} : & \left\{ \eta \, |+\rangle\!\langle +| + (1-\eta)\frac{I}{2} \, ; & \eta \, |-\rangle\!\langle -| + (1-\eta)\frac{I}{2} \right\} \\ \sigma_{Y,\eta} : & \left\{ \eta \, |Y+\rangle\!\langle Y+| + (1-\eta)\frac{I}{2} \, ; & \eta \, |Y-\rangle\!\langle Y-| + (1-\eta)\frac{I}{2} \right\} \\ \eta & \leq \frac{1}{\sqrt{2}} \implies \text{Pairwise Measurability} \end{split}$$

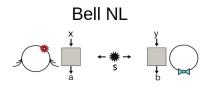
Hollow Triangle

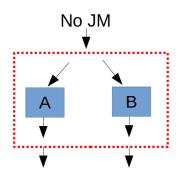
$$\begin{split} \sigma_{Z,\eta} : & \left\{ \eta \, |0\rangle\!\langle 0| + (1-\eta) \frac{I}{2} \; ; \qquad \eta \, |1\rangle\!\langle 1| + (1-\eta) \frac{I}{2} \right\} \\ \sigma_{X,\eta} : & \left\{ \eta \, |+\rangle\!\langle +| + (1-\eta) \frac{I}{2} \; ; \qquad \eta \, |-\rangle\!\langle -| + (1-\eta) \frac{I}{2} \right\} \\ \sigma_{Y,\eta} : & \left\{ \eta \, |Y+\rangle\!\langle Y+| + (1-\eta) \frac{I}{2} \; ; \qquad \eta \, |Y-\rangle\!\langle Y-| + (1-\eta) \frac{I}{2} \right\} \\ \eta & \leq \frac{1}{\sqrt{2}} \implies \text{Pairwise Measurability} \\ \eta & \leq \frac{1}{\sqrt{3}} \implies \text{Triplewise Measurability} \end{split}$$

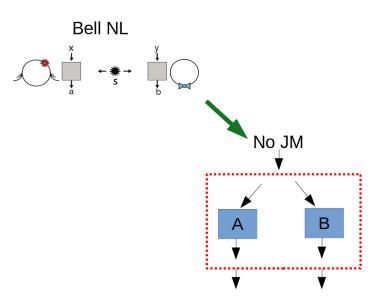
Hollow Triangle

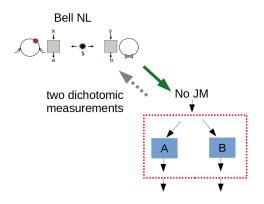


T. Heinosaari, D. Reitzner, P. Stano: Foundations of Physics (2008)



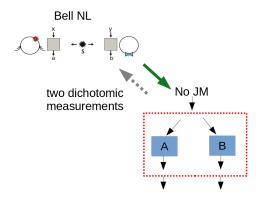






M. Wolf, D. Perez-Garcia, C. Fernandez, PRL (2009)

 $\{A_{a|x}\}_{a,x=1}^2 \text{ not JM} \Longrightarrow \exists \rho_{AB} \text{ and } \{B_{b|y}\} \text{ such that: } p(ab|xy) = \operatorname{tr} \left(\rho_{AB} \, A_{a|x} \otimes B_{b|y}\right) \text{ is Bell NL}$



M. Wolf, D. Perez-Garcia, C. Fernandez, PRL (2009)

Bell nonlocality

▶ Are all incompatible measurements useful for Bell NL?

Bell nonlocality

- ► Are all incompatible measurements useful for Bell NL?
- ► All incompatible measurements useful for EPR steering!

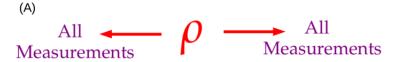
 Joint measurability, EPR steering, and Bell nonlocality

 MT. Quintino, T. Vértesi, N. Brunner, PRL (2015)
 - Joint measurability of generalized measurements implies classicality R Uola, T Moroder, O Gühne, PRL (2015)

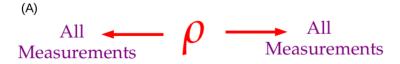
Bell nonlocality

- ► Are all incompatible measurements useful for Bell NL?
- All incompatible measurements useful for EPR steering!
 Joint measurability, EPR steering, and Bell nonlocality
 MT. Quintino, T. Vértesi, N. Brunner, PRL (2015)
 - Joint measurability of generalized measurements implies classicality R Uola, T Moroder, O Gühne, PRL (2015)
- But, some sets of incompatible measurements are "useless" for Bell NL...

Local hidden variable model



Local hidden variable model



$$\mathcal{M}$$
 All states All Measurements

Bell local measurements

► LHV model for a set of all noisy qubit projective measurements (dichotomic assumption)

Incompatible quantum measurements admitting a local hidden variable model M.T. Quintino, J. Bowles, F. Hirsch, N. Brunner, PRA, 2016

Bell local measurements

► LHV model for a set of all noisy qubit projective measurements (dichotomic assumption)

Incompatible quantum measurements admitting a local hidden variable model M.T. Quintino, J. Bowles, F. Hirsch, N. Brunner, PRA, 2016

LHV model for a set of all noisy qubit projective measurements
Quantum measurement incompatibility does not imply Bell nonlocality
F. Hirsch, M. T. Quintino, N. Brunner PRA, 2018

Bell local measurements

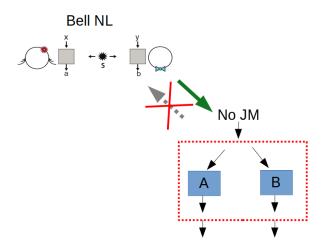
► LHV model for a set of all noisy qubit projective measurements (dichotomic assumption)

Incompatible quantum measurements admitting a local hidden variable model M.T. Quintino, J. Bowles, F. Hirsch, N. Brunner, PRA, 2016

- LHV model for a set of all noisy qubit projective measurements
 Quantum measurement incompatibility does not imply Bell nonlocality
 F. Hirsch, M. T. Quintino, N. Brunner PRA, 2018
- ► LHV model for a qubit trine

 Measurement incompatibility does not give rise to Bell violation in general

 E. Bene, T. Vertesi, NJP (2018)

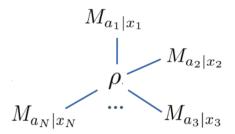


 $lackbox{ }\{M_{a|x}\}$ is not JM, but useless for Bell NL.

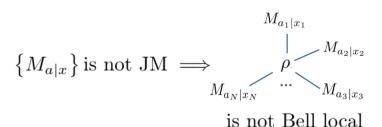
- ▶ $\{M_{a|x}\}$ is not JM, but useless for Bell NL.
- $\{M_{a|x}\}$ is not JM, but useless for **bipartite** Bell NL.

- ▶ $\{M_{a|x}\}$ is not JM, but useless for Bell NL.
- $\{M_{a|x}\}$ is not JM, but useless for **bipartite** Bell NL.
- ► How about multipartite scenarios?

- $ightharpoonup \{M_{a|x}\}$ is not JM, but useless for Bell NL.
- ▶ $\{M_{a|x}\}$ is not JM, but useless for **bipartite** Bell NL.
- ► How about multipartite scenarios?
- lacktriangle How about an N-partite Bell scenario where All parties perform the same measurement



Multipartite Bell NL and JM



All incompatible measurements on qubits lead to multiparticle Bell nonlocality M. Plávala, O. Gühne, M.T. Quintino Phys. Rev. Lett. 134, 200201 (2025)

Multipartite Bell NL and JM

If d=2 and $\{M_{a|x}\}$ is not JM, there exists a number of parties N and a state ρ such that

$$p(a_1 \dots a_N | x_1 \dots x_N) = \operatorname{tr} \left(\rho \ M_{a_1 | x_1} \otimes \dots \otimes M_{a_N | x_N} \right)$$

is Bell NL

$$\left\{M_{a|x}\right\} \text{ is not JM} \implies \begin{matrix} M_{a_1|x_1} \\ \\ M_{a_N|x_N} \end{matrix} \stackrel{M_{a_2|x_2}}{\dots} \\ M_{a_3|x_3} \\ \text{is not Bell local} \end{matrix}$$

All incompatible measurements on qubits lead to multiparticle Bell nonlocality M. Plávala, O. Gühne, M.T. Quintino Phys. Rev. Lett. 134, 200201 (2025)

Applications

► Corollary:

Let $D_{\eta}(\rho):=\eta\rho+(1-\eta)rac{I}{d}$ be the depolarising map. If $\eta>rac{1}{2}$, there exists a N-partite quantum state ho_N such that

$$D_{\eta}^{\otimes N}(\rho_N) = D_{\eta} \otimes D_{\eta} \dots D_{\eta}(\rho_N)$$

is Bell NL.

Applications

Corollary: Let $D_{\eta}(\rho):=\eta \rho+(1-\eta)\frac{I}{d}$ be the depolarising map. If $\eta>\frac{1}{2}$, there exists a N-partite quantum state ρ_N such that

$$D_{\eta}^{\otimes N}(\rho_N) = D_{\eta} \otimes D_{\eta} \dots D_{\eta}(\rho_N)$$

is Bell NL.

New JM quantifier for qubits: How many parties do you need to display Bell NL ?

 \blacktriangleright Let $\{A_{a|x}\}$ be a set of incompatible qubit measurements with LHV for bipartite Bell NL

- Let $\{A_{a|x}\}$ be a set of incompatible qubit measurements with LHV for bipartite Bell NL
- ▶ We can "activate" its nonlocality in a multipartite scenario

- Let $\{A_{a|x}\}$ be a set of incompatible qubit measurements with LHV for bipartite Bell NL
- We can "activate" its nonlocality in a multipartite scenario
- Not genuine multipartite Bell NL

$$p(abc|xyz) = \sum_{\lambda} p(\lambda)p_A(a|x\lambda)p_{BC}(bc|yz\lambda)$$

- Let $\{A_{a|x}\}$ be a set of incompatible qubit measurements with LHV for bipartite Bell NL
- We can "activate" its nonlocality in a multipartite scenario
- ▶ Not genuine multipartite Bell NL

$$p(abc|xyz) = \sum_{\lambda} p(\lambda)p_A(a|x\lambda)p_{BC}(bc|yz\lambda)$$

But definitely Bell NL

$$p(abc|xyz) \neq \sum_{\lambda} p(\lambda)p_A(a|x\lambda)p_B(b|y\lambda)p_C(c|z\lambda)$$

- Let $\{A_{a|x}\}$ be a set of incompatible qubit measurements with LHV for bipartite Bell NL
- We can "activate" its nonlocality in a multipartite scenario
- ▶ Not genuine multipartite Bell NL

$$p(abc|xyz) = \sum_{\lambda} p(\lambda)p_A(a|x\lambda)p_{BC}(bc|yz\lambda)$$

But definitely Bell NL

$$p(abc|xyz) \neq \sum_{\lambda} p(\lambda)p_A(a|x\lambda)p_B(b|y\lambda)p_C(c|z\lambda)$$

Anonymous NL:

View sets of quantum measurements as maps transforming states into probabilities $\mathcal{M}(\rho) = \{\operatorname{tr}(\rho M_{a|x})\}_{ax}$

- View sets of quantum measurements as maps transforming states into probabilities $\mathcal{M}(\rho) = \{\operatorname{tr}(\rho M_{a|x})\}_{ax}$
- $ightharpoonup \mathcal{M}$ is "entanglement breaking" iff JM

$$\mathcal{M}(\rho) = \left\{ \sum_{\lambda} \operatorname{tr}(E_{\lambda}\rho) p(a|x,\lambda) \right\}_{ax}$$

- View sets of quantum measurements as maps transforming states into probabilities $\mathcal{M}(\rho) = \{\operatorname{tr}(\rho M_{a|x})\}_{ax}$
- $ightharpoonup \mathcal{M}$ is "entanglement breaking" iff JM

$$\mathcal{M}(\rho) = \left\{ \sum_{\lambda} \operatorname{tr}(E_{\lambda}\rho) p(a|x,\lambda) \right\}_{as}$$

▶ View Bell locality as separability in Generalised Probabilistic Theories (GPT). $p(ab|xy) = \sum_{\lambda} \pi(\lambda) p_A(a|x\lambda) p_B(b|y\lambda)$

- View sets of quantum measurements as maps transforming states into probabilities $\mathcal{M}(\rho) = \{\operatorname{tr}(\rho M_{a|x})\}_{ax}$
- $ightharpoonup \mathcal{M}$ is "entanglement breaking" iff JM

$$\mathcal{M}(\rho) = \left\{ \sum_{\lambda} \operatorname{tr}(E_{\lambda}\rho) p(a|x,\lambda) \right\}_{as}$$

- View Bell locality as separability in Generalised Probabilistic Theories (GPT). $p(ab|xy) = \sum_{\lambda} \pi(\lambda) p_A(a|x\lambda) p_B(b|y\lambda)$
- ▶ \mathcal{M} is "entanglement annihilating" iff $\mathcal{M}^{\otimes N}(\rho) = \operatorname{tr} \left(\rho \; M_{a_1|x_1} \otimes \ldots \otimes M_{a_N|x_N} \right)$ is separable (Bell local) $\forall \rho$ and $\forall N \in \mathbb{N}$.

- View sets of quantum measurements as maps transforming states into probabilities $\mathcal{M}(\rho) = \{\operatorname{tr}(\rho M_{a|x})\}_{ax}$
- $ightharpoonup \mathcal{M}$ is "entanglement breaking" iff JM

$$\mathcal{M}(\rho) = \left\{ \sum_{\lambda} \operatorname{tr}(E_{\lambda}\rho) p(a|x,\lambda) \right\}_{ax}$$

- View Bell locality as separability in Generalised Probabilistic Theories (GPT). $p(ab|xy) = \sum_{\lambda} \pi(\lambda) p_A(a|x\lambda) p_B(b|y\lambda)$
- ▶ \mathcal{M} is "entanglement annihilating" iff $\mathcal{M}^{\otimes N}(\rho) = \operatorname{tr} \left(\rho \; M_{a_1|x_1} \otimes \ldots \otimes M_{a_N|x_N} \right)$ is separable (Bell local) $\forall \rho$ and $\forall N \in \mathbb{N}$.
- Generalise a result on entanglement breaking channels and entanglement annihilating channels. When do composed maps become entanglement breaking? M. Christandl, A. Müller-Hermes, and M. M. Wolf Annales Henri Poincaré 20. 2295 (2019)

- View sets of quantum measurements as maps transforming states into probabilities $\mathcal{M}(\rho) = \{\operatorname{tr}(\rho M_{a|x})\}_{ax}$
- $ightharpoonup \mathcal{M}$ is "entanglement breaking" iff JM

$$\mathcal{M}(\rho) = \left\{ \sum_{\lambda} \operatorname{tr}(E_{\lambda}\rho) p(a|x,\lambda) \right\}_{ax}$$

- View Bell locality as separability in Generalised Probabilistic Theories (GPT). $p(ab|xy) = \sum_{\lambda} \pi(\lambda) p_A(a|x\lambda) p_B(b|y\lambda)$
- ▶ \mathcal{M} is "entanglement annihilating" iff $\mathcal{M}^{\otimes N}(\rho) = \operatorname{tr} \left(\rho \; M_{a_1|x_1} \otimes \ldots \otimes M_{a_N|x_N} \right)$ is separable (Bell local) $\forall \rho$ and $\forall N \in \mathbb{N}$.
- ► Generalise a result on entanglement breaking channels and entanglement annihilating channels.

 When do composed maps become entanglement breaking?

 M. Christandl, A. Müller-Hermes, and M. M. Wolf

 Annales Henri Poincaré 20, 2295 (2019)
- ► Recognise that, measurements lead to Bell local correlations of qubit states iff they're generalising annihilating channels.

▶ JM and multipartite Bell NL for d > 2 ?

- ▶ JM and multipartite Bell NL for d > 2 ?
- Thm: If the result does not hold for d>2, there exists an NPT bound entangled state.

- ▶ JM and multipartite Bell NL for d > 2 ?
- Thm: If the result does not hold for d>2, there exists an NPT bound entangled state.

- ▶ JM and multipartite Bell NL for d > 2 ?
- ▶ Thm: If the result does not hold for d > 2, there exists an NPT bound entangled state.
- lacktriangle How many parties do we need? Is N very big?

- ▶ JM and multipartite Bell NL for d > 2 ?
- Thm: If the result does not hold for d > 2, there exists an NPT bound entangled state.
- ► How many parties do we need? Is N very big?
- Other multipartite scenarios?

- ▶ JM and multipartite Bell NL for d > 2 ?
- ▶ Thm: If the result does not hold for d > 2, there exists an NPT bound entangled state.
- ► How many parties do we need? Is N very big?
- Other multipartite scenarios?
- Simple/useful criteria for measurement Bell NL?

Thank you!

