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Warming up:

How to transform quantum states?
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Maths oriented quantum info

▶ Linear maps:
C̃ : L(Hin) → L(Hout),

▶ “Transform quantum states into quantum states”

ρin ∈ state =⇒ ρin C̃ ∈ state

▶ TP:
if tr(ρ) = 1, then tr

(
C̃(ρ)

)
= 1

▶ Positive:
if ρ ≥ 0, then C̃(ρ) ≥ 0

▶ OK... but how about state transposition, T̃ (ρ) = ρT ?
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C̃ is a quantum channel when
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Physics oriented quantum info

▶ Schrodinger equation, unitary operations

▶ System we have access and enviroment
▶ We can definitely do this: C̃(ρ) = trE(U |0⟩⟨0|E ⊗ ρ U †)

I O
C̃ , =

E
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|0⟩

Ũ , (1)

▶ Nice, this is CPTP!
▶ Naimark dilation: CPTP is this!
▶ We’re all happy! Pick your favourity approach. :)
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Part 1

Trasnforming quantum channels
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How to transform quantum channels?
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Definitely, this can be done

▶ Pre-processing and post-processing:

˜̃S(C̃) =
I′ I O O′
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Ẽ C̃ D̃

▶ As a supermap ˜̃S : [L(HI) → L(HO)] → [L(HI′) → L(HO′)]

˜̃S(C̃) = D̃ ◦ C̃ ◦ Ẽ
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)
◦ Ẽ
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What can we accept?
▶ Quantum superchannel:˜̃S : [L(HI) → L(HO)] → [L(HI′) → L(HO′)]

▶ TP-Preserving

if C̃ is TP, then ˜̃S(C̃) is TP
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Quantum superchannels

▶ We are all happy! :)

▶ ˜̃S is TPP and CCPP iff ∃ quantum channels Ẽ and D̃ such
that ∀C̃, we have ˜̃S(C̃) = trA

(
D̃ ◦

(
C̃ ⊗ ĨA

)
◦ Ẽ

)
, that is,

˜̃S =

A

P I O F
Ẽ D̃

G. Chiribella, G. M. D’Ariano, and P. Perinotti EPL (2008)

▶ Causality is proven!
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Charactersiting quantum superchannels

Choi isomorphism for supermaps:

F

P

I

O

S =

A

P I O F

P P

O I

O O

Ẽ D̃

ϕ+d

ϕ+d



Charactersiting quantum superchannels

˜̃S =

A

P I O F
Ẽ D̃

S ∈ L(HP ⊗HI ⊗HO ⊗HF) is a superchannel iff

S ≥ 0

trF(S) = trOF(S)⊗
IF
dF

trIOF(S) = trPIOF(S)⊗
II
dI

tr(S) = dPdO
G. Chiribella, G.M D’Ariano, P. Perinotti, PRL (2008)
G. Gutoski, J. Watrous, STOC (2007)

Affine and positive semidefinite constraints =⇒ SDP!!
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Quantum unitary transformations

Ũ 7→ f̃ (U)



What do we want?

Ideally. . .

Something like this:

Ỹ Ũ2 Ỹ = Ũ ∗
2
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J. Miyazaki, A. Soeda, and M. Murao
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Applications

▶ Unitary conjugation, f(U) = U∗:
F (d) = 2

d(d−1) , or p(d > 2) = 0.
G. Chiribella, D. Ebler, NJP (2016), J. Miyazaki, A. Soeda, M. Murao, PRR (2019)

▶ Unitary transposition, f(U) = UT :
F (d) = 2

d2
or p(d) = 1

d2
.
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Murao, PRA (2019)

▶ Unitary inversion, f(U) = U−1:
F (d) = 2

d(d−1) , or p(d > 2) = 0.
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▶ Unitary Storage-and-Retrieval f(U) = U :
A. Bisio, G. Chiribella, G. M. D’Ariano, S. Facchini, P. Perinotti M. Sedlák, PRA (2010) A.

Bisio, M. Ziman, PRL (2019)
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Qubit unitary inversion

For qubits, we have:

Ỹ Ũ2 Ỹ = Ũ∗
2

Hence, with p = 1/4, we can invert an arbitrary unitary operation!



Delayed input state

P

I O
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Bij
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Ũd



Quantum unitary transformations

We can call/query operations many times!

Ũ
⊗k

7→ f̃ (U)



Multiple calls

▶ Scenarios with multiple calls:

▶ This also fits the higher-order quantum operations framework
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The homomorphic case

▶ When f(UV ) = f(U)f(V ), parallel calls are optimal
A. Bisio, G. M. D’Ariano, P. Perinotti, M. Sedlak, PLA (2014)

▶ If f : SU(d) → SU(d), f(U) = U∗ is the only non-trivial
homomorphism

▶ There is a circuit that performs U⊗k
d 7→ U∗

d with F (d, k) = k+1
d(d−k)

▶ We can use SDP duality and group theoretic methods to prove that
F (d, k) ≤ k+1

d(d−k)
IEEE Trans. Inf. Theory (2022)
D. Ebler, M. Horodecki, M. Marciniak, T. Młynik, M.T. Quintino, M. Studziński

▶ Also, if k < d− 1, p = 0
M.T. Quintino, Q. Dong, A. Shimbo, A. Soeda, M. Murao
PRA (2019)
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Unitary inversion

▶ Parallel (d = 2): p = 1− 3
k+3

▶ Parallel (k ≥ d− 1):
1− 1

k ∼ 1− d2−1
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k
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Unitary transposition

P

I O

F
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X̃i
d Z̃j

d
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Adaptive circuits

When we fail, we lose track of the unknown input state...
then we cannot re-iterate this protocol...

1

d2
P F

X̃i
d Z̃j

d
ŨT
d



Adaptive circuits

Can we “reset the protocol” when we fail?

P F
X̃i
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Adaptive circuits

Sometimes we can reset it.

P F
X̃i

d Z̃j
d

ŨT
d

Ũ∗
d Z̃−j

d X̃−i
d

=
P F

1̃d

Success or draw =⇒ repeat until success (approaches one
exponetially)



Arbitrary functions f(Ud)

Nice!
Success or draw strategy exists for inverse and transposition!

but how about other functions of unitaries?

U⊗k
d 7→ f(Ud)
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Success or draw

Theorem
With k = d calls, success or draw is always possible!

Q. Dong, M.T. Quintino, A. Soeda, M. Murao
PRL (2021)



Deterministic and exact is possible

For qubits, k = 4 calls are enough:

S. Yoshida, A. Soeda, M. Murao PRL (2023)



Success or draw

And, for qudits, k ≈ d2,

Y. A. Chen, Y. Mo, Y. Liu, L. Zhang, X. Wang (2024)



Probabilistic parallel unitary transposition

Great, and what can we say about parallel probabilistic unitary
transposition/inversion?



Probabilistic parallel unitary transposition

Equivalent to unitary SAR1, can be done with probabilistic PBT

1 : Optimal Probabilistic Storage and Retrieval of Unitary Channels
M. Sedlák, A. Bisio, and M. Ziman
PRL 2019



Probabilistic parallel unitary transposition
Equivalent to unitary SAR, can be done with probabilistic PBT

pPAR
trans(d, k) = 1− d2 − 1

k + d2 − 1
, (Ud ⊗ 1)

⊗k |ψPBT⟩ =
(
1⊗ UT

d

)⊗k |ψPBT⟩

P

A i

I1 O1

Ik Ok F

...
...

{Mi}

ψPBT D̃i

Ũd

Ũd

= pPAR
trans(d, k)

P F
Ũd



Deterministic parallel unitary inversion and transposition

What does it change in a deterministic non-exact scenario?



Deterministic parallel unitary inversion and transposition



Deterministic parallel unitary inversion and transposition

One-to-one Correspondence between Deterministic Port-Based Teleportation and Unitary Estimation
S. Yoshida, Y. Koizumi, M. Studziński, M.T. Quintino, M. Murao
arXiv:2408.11902 (2024)
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Deterministic parallel unitary inversion and transposition

One-to-one Correspondence between Deterministic Port-Based Teleportation and Unitary Estimation
S. Yoshida, Y. Koizumi, M. Studziński, M.T. Quintino, M. Murao
arXiv:2408.11902 (2024)



Part 2

Measuring quantum channels
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▶ Quantum measurement:

ρ 7→ pi

▶ POVM : Mi ≥ 0,
∑

iMi = 1

tr(Miρ) = pi

▶ Quantum supermeasurement:

C̃ 7→ pi

▶ PPOVM/testers : Ti ≥ 0,
∑

iMi = σ ⊗ 1, tr(σ) = 1

tr(TiC) = pi
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Measuring quantum operations

Super POVMs! (Testers/Process POVMs)

Process POVM: A mathematical framework for the description of process tomography experiments M.
Ziman, PRA (2008)
Theoretical framework for quantum networks
G. Chiribella, G.M. D’Ariano, P. Perinotti, PRA (2009)



Measuring quantum operations

G. Chiribella, G.M. D’Ariano, P. Perinotti PRL (2008)
G. Chiribella, G.M. D’Ariano, P. Perinotti, PRA (2009)
J. Bavaresco, M. Murao, M.T. Quintino PRL (2021)
J. Bavaresco, M. Murao, M.T. Quintino J. Math. Phys. (2022)



Channel discrimination



Applications:

▶ Channel discrimination:
Finding optimal strategies, when sequential strategies are
useful

▶ Query complexity and any oracle based task:
A. Abbott, M. Mhalla, P. Pocreau, PPR (2024)

▶ Unitary estimation
▶ Channel comparison/ identifying malfunctioning gates: A. Soeda,

A. Shimbo, M. Murao, PRA (2021), M. Skotiniotis, S. Llorens, R. Hotz, J. Calsamiglia, R.
Muñoz-Tapia, PRR (2024)

▶ Quantum measurement discrimination: M. Sedlak, M. Ziman, PRA (2014)
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Part 3

Transformations beyond the circuit formalism



quantum data: ⇢

quantum functions:    
eC

higher-order quantum
operations:

quantum processes

quantum states

ee⇤ : [L(Hin) ! L(Hout)]

! [L(Hin0) ! L(Hout0)]

⇢ 2 L(Hin)

eC : L(Hin) ! L(Hout)
quantum operations
(quantum channels)

“functions of functions”

Formalism: Higher-order operations

= ⇢
0⇢ eC

eC
0

:

:

ee⇤ ee⇤

eC =



2) Quantum higher-order operations go beyond the quantum circuit model
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|0i |1i |0i+ |1i

7!

CACA

CB CB
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Key features: Higher-order operations
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The quantum switch

G. Chiribella, G. M. D’Ariano, P. Perinotti, B. Valiron, PRA (2013)

If A(ρ) = UAρU
†
A and B(ρ) = UBρU

†
B

S : (UA, UB) 7→ |0⟩⟨0| ⊗ UBUA + |1⟩⟨1| ⊗ UAUB
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Beyond the circuit formalism

The superper channel:

S. Milz, J. Bavaresco, G. Chiribella, Quantum (2022) S. Milz, M.T. Quintino, Quantum (2024)



Beyond the circuit formalism

Process matrices: extracting probabilities from quantum
instruments:

tr
(
WAa|x ⊗Bb|y

)
= p(ab|xy)

O. Oreshkov, F. Costa, C. Brukner, Nature Communications (2012)
M. Araújo, C. Branciard, F. Costa, A. Feix, C. Giarmatzi, C. Brukner, NJP (2015)



Beyond the circuit formalism

Is indefinite causality OK?



Beyond the circuit formalism

What can be done?
Quantum circuits with quantum control:

J. Wechs, H. Dourdent, A.A. Abbott, C. Branciard, PRX Quantum (2021)



Beyond the circuit formalism

What cannot be done?
Purifiable processs, reversibility preserving:

M. Araújo, A. Feix, M. Navascués, A. Brukner, Quantum (2017)



Part 4

The cost of a quantum circuit simulation



Results based on:



The quantum switch

What can we do with that?

The commuting, anti-commuting game:
Perfect discrimination of no-signalling channels via quantum superposition of causal structures
G. Chiribella, PRA 2012
Witnessing causal nonseparability
M. Araújo, C. Branciard, F. Costa, A. Feix, C. Giarmatzi, Č. Brukner, NJP 2015
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Commutation/Anti-Commutation game

▶ Let {(U i
A, U

i
B)}Ni=1 be a set of unitaries that commutes or

anticommutes.

▶ Given a pair of unitaries at random, can you decide if they
commute or anticommute?

▶ Standard ordered strategy:

▶ We can find finite sets of unitaries such that pordered ≤ 0.87.
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Commutation/Anti-Commutation game

▶ Great, the quantum switch is useful!

▶ But . . .
▶ How big is this advantage? What if we do not have the

quantum switch, but we have access to more queries?
▶ With a single extra query, sequential strategies can decide if

(UA, UB) commutes or anti-commutes
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Quantum switch circuit simulation

▶ Quantum computations without definite causal structure
G. Chiribella, G. M. D’Ariano, P. Perinotti, B. Valiron, PRA (2013)

▶ If A and B are unitary:

▶ The switch is essentially useless for query complexity tasks. . .
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▶ What if the operations are not unitary?
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Quantum switch circuit simulation

Thm1: There is no quantum circuit that simulates the quantum
switch when one extra query of each channel is available.



Quantum switch circuit simulation

▶ Thm1: There is no quantum circuit that simulates the
quantum switch when one extra query of each channel is
available.

▶ Probabilistic simulation:

▶ Restricted probabilistic simulation:



Quantum switch circuit simulation

▶ Thm1: There is no quantum circuit that simulates the
quantum switch when one extra query of each channel is
available.

▶ Probabilistic simulation:

▶ Restricted probabilistic simulation:



Quantum switch circuit simulation

▶ Thm1: There is no quantum circuit that simulates the
quantum switch when one extra query of each channel is
available.

▶ Probabilistic simulation:

▶ Restricted probabilistic simulation:



Quantum switch circuit simulation

▶ How about the probabilities?
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▶ How about the probabilities?



Quantum switch circuit simulation
▶ The result is also robust, F (S,Ssim) = 1− ϵ



Quantum switch circuit simulation

▶ How about the probabilities when k = 4?
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▶ How about identical channels?

If the target is not discarded, p < 0.942 for the AAAA order



Quantum switch circuit simulation

▶ How about identical channels?

If the target is not discarded, p < 0.942 for the AAAA order



Quantum switch circuit simulation

▶ How about unitary channels?

If the target is not discarded, p < 0.822 for the AABB order and
p < 0.667 for the BAAA order
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p < 0.667 for the BAAA order



Quantum switch circuit simulation

▶ How these results were obtained?

▶ Optimise over all inputs:
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Quantum switch circuit simulation

▶ How these results were obtained?
▶ Optimise over finitely inputs:



Quantum switch circuit simulation

▶ SDP (using splitting conic solver)



Quantum switch circuit simulation

▶ But. . . is that a mathematical proof?

▶ No! But, we can extract a proof out of it!
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Quantum switch circuit simulation

▶ Very nice. . . But with the computer we are limited to a few
queries. . .

▶ Thm2: Let d = 2n be the dimension of the target state.
If kA = 1 and kB < 2n, there is no quantum circuit simulation
of the quantum switch.
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▶ Thm2: Let d = 2n be the dimension of the target state.
If kA = 1 and kB < 2n, there is no QCQC simulation of the
quantum switch.

▶ Proof idea: We analyse the constraints obtained from
imposing that the simulation holds for uniform convex
combinations of unitary operators.

We then analyse the case of Pauli operations using a
differentiation technique (from Analytical lower bound on
query complexity for transformations of unknown unitary
operations, T. Odake, S. Yoshida, M. Murao).
This allows us to note that imposing the simulation to hold
has very strong implications.
In particular, its eigendecomposition cannot be compatible
with QCQC processes.
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▶ The quantum switch is not restricted to single-partite channels.
▶ How about instruments, bipartite channels?
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Thank you


