Parallel, sequential, and non-causal strategies for transforming unitary operations and discriminating quantum channel via a higher-order approach

Marco Túlio Quintino

Sorbonne Université, CNRS, LIP6

March 16, 2023

$$|\psi_{\mathsf{in}}
angle \mapsto |\psi_{\mathsf{out}}
angle$$

$$|\psi_{\mathsf{in}}
angle \mapsto |\psi_{\mathsf{out}}
angle = U|\psi_{\mathsf{in}}
angle$$

$$U^{\dagger}U=I$$

$$ho_{\mathsf{in}} \mapsto
ho_{\mathsf{out}}$$

$$ho_{\mathrm{in}}\mapsto
ho_{\mathrm{out}}=\widetilde{\Lambda}(
ho_{\mathrm{in}})$$

$$\widetilde{\Lambda}$$
 is CPTP

Quantum operation transformations

Can we transform quantum operations??

Quantum operation transformations

Can we transform quantum operations??

$$U_{\mathsf{in}} \mapsto U_{\mathsf{out}}$$

Quantum operation transformations

Can we transform quantum operations??

$$U_{\mathsf{in}}\mapsto U_{\mathsf{out}}$$
 $\widetilde{\Lambda_{\mathsf{in}}}\mapsto \widetilde{\Lambda_{\mathsf{out}}}$

"Quantum" unitary inversion

$$U_d \mapsto U_d^{-1}$$

The universal/unknown paradigm

$$\sigma_{Z} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \sigma_{Z}^{-1}$$

Ideally...

Something like this:

$$-\sigma_Y - U_2 - \sigma_Y - = -U_2^* -$$

Phys. Rev. Research (2019) J. Miyazaki, A. Soeda, and M. Murao

▶ Universal (also works for "unknown" d-dimensional unitary)

- ▶ Universal (also works for "unknown" d-dimensional unitary)
- Exact

- ▶ Universal (also works for "unknown" d-dimensional unitary)
- Exact
- ► Possible?

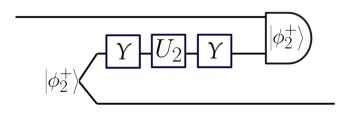
- ▶ Universal (also works for "unknown" d-dimensional unitary)
- Exact
- ► Possible?
- Optimal average fidelity: $F_{max} = \frac{2}{d^2}$ G. Chiribella and D. Ebler, New Journal of Physics (2016)

- ▶ Universal (also works for "unknown" d-dimensional unitary)
- Exact
- ► Possible?
- Optimal average fidelity: $F_{max} = \frac{2}{d^2}$ G. Chiribella and D. Ebler, New Journal of Physics (2016)
- $ightharpoonup F_{max} < 1 \implies \mathsf{Impossible...}$

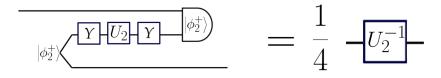
Probabilistic heralded?

Probabilistic heralded? For qubits, Possible!

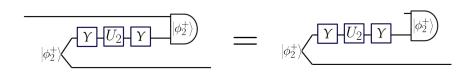
Explicit construction



Explicit construction



Delayed input state protocols

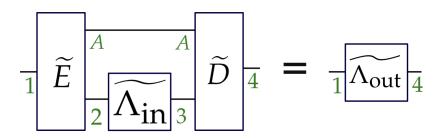


► Is it optimal?

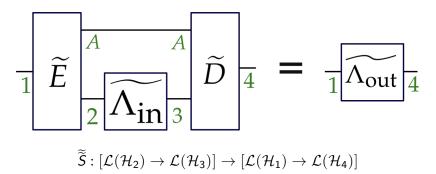
- ► Is it optimal?
- Qubits are nice, but what about general qudits?

- ► Is it optimal?
- Qubits are nice, but what about general qudits?
- ► How can we increase the success probability?

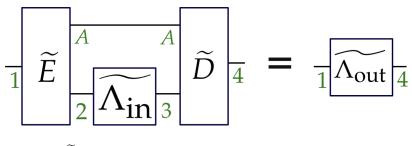
- ► Is it optimal?
- Qubits are nice, but what about general qudits?
- How can we increase the success probability?
- ► Higher-order operations and supermaps!



The most general quantum superchannel?

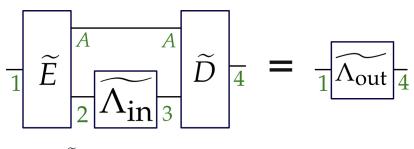


 $ightharpoonup \widetilde{\widetilde{S}}$ is a linear supermap



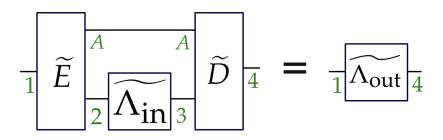
$$\widetilde{\widetilde{S}}: [\mathcal{L}(\mathcal{H}_2) \to \mathcal{L}(\mathcal{H}_3)] \to [\mathcal{L}(\mathcal{H}_1) \to \mathcal{L}(\mathcal{H}_4)]$$

- $\triangleright \tilde{S}$ is a linear supermap
- \tilde{S} maps valid channels into valid channels (TP preserving, CP preserving)



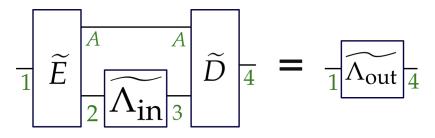
$$\widetilde{\widetilde{S}}: [\mathcal{L}(\mathcal{H}_2) \to \mathcal{L}(\mathcal{H}_3)] \to [\mathcal{L}(\mathcal{H}_1) \to \mathcal{L}(\mathcal{H}_4)]$$

- \triangleright \tilde{S} is a linear supermap
- \widetilde{S} maps valid channels into valid channels (TP preserving, CP preserving)
- \triangleright \tilde{S} may be applied into part of channel (completely CP preserving)



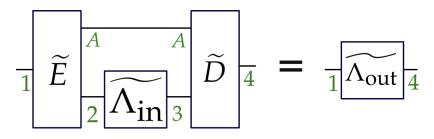
$$\widetilde{\widetilde{S}}(\widetilde{\Lambda_{\mathsf{in}}}) = \mathsf{tr}_{\mathcal{A}}\left(\widetilde{D} \circ \left(\widetilde{\Lambda_{\mathsf{in}}} \otimes \widetilde{\mathit{I}_{\mathcal{A}}}\right) \circ \widetilde{\mathit{E}}\right)$$

- G. Chiribella, G. M. D'Ariano, and P. Perinotti EPL (2008)
- K. Życzkowski J. Phys. A 41, 355302-23 (2008)
- G. Gutoski and J. Watrous Proceedings of STOC (2007)



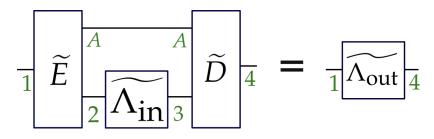
$$\widetilde{\widetilde{S}}: [\mathcal{L}(\mathcal{H}_2) \to \mathcal{L}(\mathcal{H}_3)] \to [\mathcal{L}(\mathcal{H}_1) \to \mathcal{L}(\mathcal{H}_4)]$$

How to represent such mathematical objects?



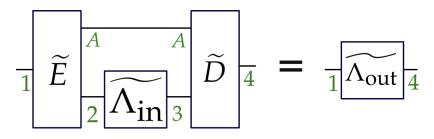
$$\widetilde{\widetilde{S}}: [\mathcal{L}(\mathcal{H}_2) \to \mathcal{L}(\mathcal{H}_3)] \to [\mathcal{L}(\mathcal{H}_1) \to \mathcal{L}(\mathcal{H}_4)]$$

- How to represent such mathematical objects?
- Choi–Jamiołkowski isomorphism!!



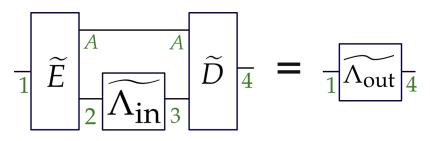
$$\widetilde{\widetilde{S}}: [\mathcal{L}(\mathcal{H}_2) \to \mathcal{L}(\mathcal{H}_3)] \to [\mathcal{L}(\mathcal{H}_1) \to \mathcal{L}(\mathcal{H}_4)]$$

- How to represent such mathematical objects?
- Choi–Jamiołkowski isomorphism!!
- ▶ Maps $\widetilde{\Lambda}$: $\mathcal{L}(\mathcal{H}_2) \to \mathcal{L}(\mathcal{H}_3)$ become matrices $\Lambda \in \mathcal{L}(\mathcal{H}_2 \otimes \mathcal{H}_3)$.



$$\widetilde{\widetilde{S}}: [\mathcal{L}(\mathcal{H}_2) \to \mathcal{L}(\mathcal{H}_3)] \to [\mathcal{L}(\mathcal{H}_1) \to \mathcal{L}(\mathcal{H}_4)]$$

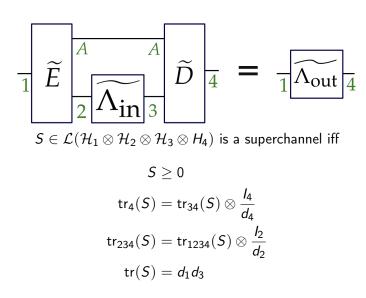
- How to represent such mathematical objects?
- Choi–Jamiołkowski isomorphism!!
- ▶ Maps $\widetilde{\Lambda}: \mathcal{L}(\mathcal{H}_2) \to \mathcal{L}(\mathcal{H}_3)$ become matrices $\Lambda \in \mathcal{L}(\mathcal{H}_2 \otimes \mathcal{H}_3)$.
- ▶ Supermaps $\widetilde{\widetilde{S}}$ become maps $\widetilde{S}: \mathcal{L}(\mathcal{H}_2 \otimes \mathcal{H}_3) \to \mathcal{L}(\mathcal{H}_1 \otimes \mathcal{H}_4)$



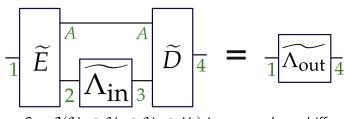
$$\widetilde{\widetilde{S}}: [\mathcal{L}(\mathcal{H}_2) \to \mathcal{L}(\mathcal{H}_3)] \to [\mathcal{L}(\mathcal{H}_1) \to \mathcal{L}(\mathcal{H}_4)]$$

- How to represent such mathematical objects?
- Choi–Jamiołkowski isomorphism!!
- ▶ Maps $\widetilde{\Lambda}: \mathcal{L}(\mathcal{H}_2) \to \mathcal{L}(\mathcal{H}_3)$ become matrices $\Lambda \in \mathcal{L}(\mathcal{H}_2 \otimes \mathcal{H}_3)$.
- ▶ Supermaps $\widetilde{\widetilde{S}}$ become maps $\widetilde{S}: \mathcal{L}(\mathcal{H}_2 \otimes \mathcal{H}_3) \to \mathcal{L}(\mathcal{H}_1 \otimes \mathcal{H}_4)$
- ▶ Maps \widetilde{S} become matrices $S \in \mathcal{L}(\mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \mathcal{H}_3 \otimes \mathcal{H}_4)$

Superchannels



Superchannels



 $S \in \mathcal{L}(\mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \mathcal{H}_3 \otimes \mathcal{H}_4)$ is a superchannel iff

$$S \geq 0$$

$$\mathsf{tr}_4(S) = \mathsf{tr}_{34}(S) \otimes \frac{I_4}{d_4}$$

$$\mathsf{tr}_{234}(S) = \mathsf{tr}_{1234}(S) \otimes \frac{I_2}{d_2}$$

$$\mathsf{tr}(S) = d_1 d_3$$

Affine and positive semidefinite constraints \implies SDP!!

► Is it optimal?

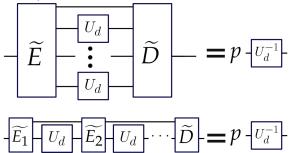
- ► Is it optimal?
- $\blacktriangleright \text{ Yes!} \quad d=2 \implies p \le \frac{1}{4}$

- ► Is it optimal?
- $\blacktriangleright \text{ Yes!} \quad d=2 \implies p \le \frac{1}{4}$
- Qubits are nice, but what about general qudits?

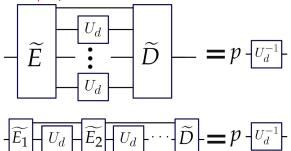
- ► Is it optimal?
- $\blacktriangleright \text{ Yes!} \quad d=2 \implies p \le \frac{1}{4}$
- Qubits are nice, but what about general qudits?
- $d > 2 \implies p = 0$

- ► Is it optimal?
- $\blacktriangleright \text{ Yes!} \quad d=2 \implies p \le \frac{1}{4}$
- Qubits are nice, but what about general qudits?
- $ightharpoonup d > 2 \implies p = 0$
- How can we increase the success probability?

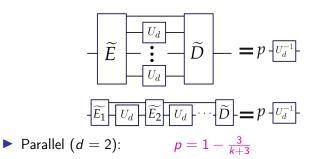
- Is it optimal?
- $\blacktriangleright \text{ Yes!} \quad d=2 \implies p \le \frac{1}{4}$
- Qubits are nice, but what about general qudits?
- $ightharpoonup d > 2 \implies p = 0$
- ▶ How can we increase the success probability?
- ► More calls/copies

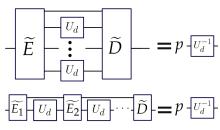


- Is it optimal?
- ▶ Qubits are nice, but what about general qudits?
- $ightharpoonup d > 2 \implies p = 0$
- ▶ How can we increase the success probability?
- ► More calls/copies



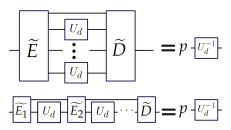
(Quantum combs, channel with memory, quantum strategy, quantum superchannels with multiple inputs)





- ▶ Parallel (d = 2): $p = 1 \frac{3}{k+3}$
- Parallel (k < d 1): p = 0

$$o = 0$$



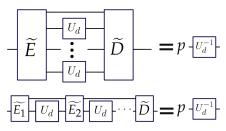
▶ Parallel (d = 2): $p = 1 - \frac{3}{k+3}$

$$p=1-\tfrac{3}{k+3}$$

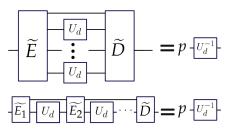
Parallel (k < d-1): p = 0

$$p = 0$$

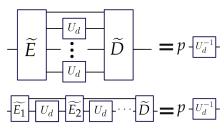
▶ Parallel
$$(k \ge d-1)$$
:
 $1 - \frac{1}{k} \sim 1 - \frac{d^2 - 1}{\left\lfloor \frac{k}{d-1} \right\rfloor + d^2 - 1} \le p \le 1 - \frac{d^2 - 1}{k(d-1) + d^2 - 1} \sim 1 - \frac{1}{k}$



- ▶ Parallel (d = 2): $p = 1 \frac{3}{\nu + 2}$
- Parallel (k < d-1): p = 0
- ▶ Parallel $(k \ge d 1)$: $1 - \frac{1}{k} \sim 1 - \frac{d^2 - 1}{\left|\frac{k}{d - 1}\right| + d^2 - 1} \le p \le 1 - \frac{d^2 - 1}{k(d - 1) + d^2 - 1} \sim 1 - \frac{1}{k}$
- ▶ Optimal parallel ⇒ delayed input-state

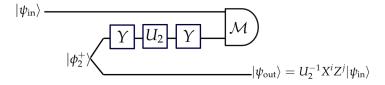


- ▶ Parallel (d = 2): $p = 1 \frac{3}{k+3}$
- Parallel (k < d 1): p = 0
- ▶ Parallel $(k \ge d-1)$: $1 - \frac{1}{k} \sim 1 - \frac{d^2 - 1}{\left|\frac{d}{d-1}\right| + d^2 - 1} \le p \le 1 - \frac{d^2 - 1}{k(d-1) + d^2 - 1} \sim 1 - \frac{1}{k}$
- ► Optimal parallel ⇒ delayed input-state
- ▶ Sequential (k < d 1): p = 0

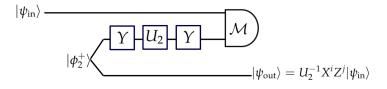


- ▶ Parallel (d = 2): $p = 1 \frac{3}{k+3}$
- ▶ Parallel (k < d 1): p = 0
- ▶ Parallel $(k \ge d-1)$: $1 - \frac{1}{k} \sim 1 - \frac{d^2 - 1}{\left\lfloor \frac{k}{d-1} \right\rfloor + d^2 - 1} \le p \le 1 - \frac{d^2 - 1}{k(d-1) + d^2 - 1} \sim 1 - \frac{1}{k}$
- ▶ Optimal parallel ⇒ delayed input-state
- ► Sequential (k < d 1): p = 0
- Sequential $(k \ge d-1)$: $p \ge 1-\left(1-\frac{1}{d^2}\right)^{\left\lceil\frac{k+2-d}{d}\right\rceil} \sim 1-\frac{1}{e^k}$ MTQ, Q. Dong, A. Shimbo, A. Soeda, M. Murao PRA (2019), PRL (2019)

Qubit adaptive circuit

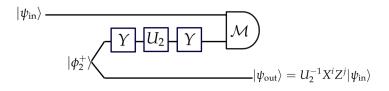


Qubit adaptive circuit



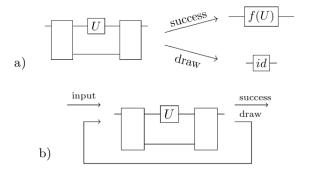
If we fail, we "destroy" the unknown input state... then we cannot re-iterate this protocol...

Qubit adaptive circuit

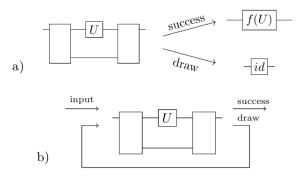


But well... if we can use U_2 once more: apply $X^{-i}Z^{-j}U_2$ to recover the input state!

Success or draw



Success or draw



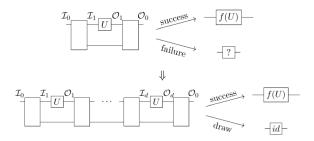
With k uses, this approach leads to a success probability of

$$p_s = 1 - (1 - p_{\mathsf{draw}})^k$$

Success or draw

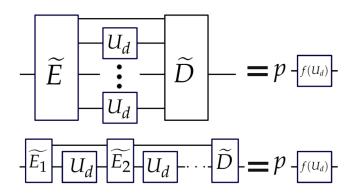
Theorem

Success or draw is always possible!

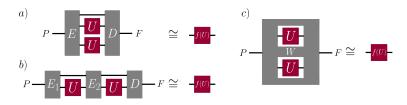


Q. Dong, MTQ, A. Soeda, M. Murao PRL (2021)

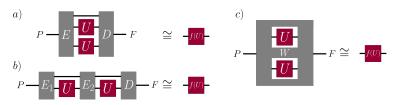
Arbitrary functions $f(U_d)$



▶ Deterministic non-exact is also interesting!

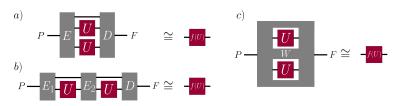


▶ Deterministic non-exact is also interesting!



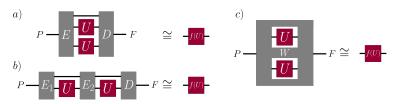
Average channel fidelity (over the Haar measure)

Deterministic non-exact is also interesting!



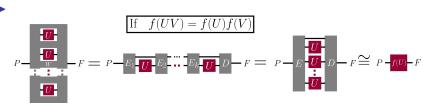
- Average channel fidelity (over the Haar measure)
- Maximal white noise visibility

Deterministic non-exact is also interesting!

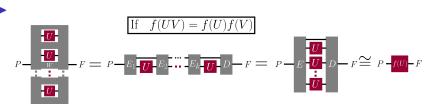


- Average channel fidelity (over the Haar measure)
- Maximal white noise visibility
- ► Parallel inversion = Parallel transposition = Unitary estimation

 MTQ, D. Ebler, Quantum 2022



A. Bisio, G.M. D'Ariano, P. Perinotti, M. Sedlak Physics Letters A (2014)

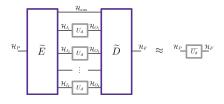


A. Bisio, G.M. D'Ariano, P. Perinotti, M. Sedlak Physics Letters A (2014)

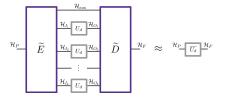
• e.g.,
$$(UV)^* = U^*V^*$$
, and cloning

▶ When $f: \mathcal{SU}(d) \to \mathcal{SU}(d)$ and f(UV) = f(U)f(V), we know "everything".

- ▶ When $f : SU(d) \rightarrow SU(d)$ and f(UV) = f(U)f(V), we know "everything".
- ▶ Step 1: show that f has to be the complex conjugation

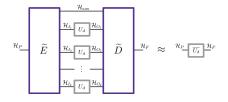


- ▶ When $f : \mathcal{SU}(d) \to \mathcal{SU}(d)$ and f(UV) = f(U)f(V), we know "everything".
- ▶ Step 1: show that f has to be the complex conjugation



▶ Step 2: construct a circuit with $F = \frac{k+1}{d(d-1)}$

- ▶ When $f : \mathcal{SU}(d) \to \mathcal{SU}(d)$ and f(UV) = f(U)f(V), we know "everything".
- Step 1: show that f has to be the complex conjugation

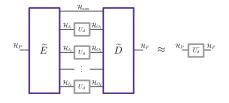


- ▶ Step 2: construct a circuit with $F = \frac{k+1}{d(d-1)}$
- Step 3: use SDP duality and group theoretic results on Young-Tableau to prove $F \leq \frac{k+1}{d(d-1)}$

arXiv:2206 00107

D. Ebler, M. Horodecki, M. Marciniak, T. Młynik, MTQ, M. Studziński

- ▶ When $f : \mathcal{SU}(d) \to \mathcal{SU}(d)$ and f(UV) = f(U)f(V), we know "everything".
- Step 1: show that f has to be the complex conjugation



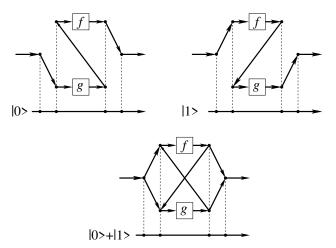
- ▶ Step 2: construct a circuit with $F = \frac{k+1}{d(d-1)}$
- Step 3: use SDP duality and group theoretic results on Young-Tableau to prove $F \le \frac{k+1}{d(d-1)}$
 - D. Ebler, M. Horodecki, M. Marciniak, T. Młynik, MTQ, M. Studziński
- ▶ Step 4: prove that if k < d 1, p = 0

More general superchannels?

Can we go beyond sequential quantum circuits?

More general superchannels?

Quantum Switch:



Quantum computations without definite causal structure G. Chiribella, G. M. D'Ariano, P. Perinotti, B. Valiron PRA 2013

More general superchannels?

$$\widetilde{\widetilde{S}}(\widetilde{\Lambda_1}\otimes\widetilde{\Lambda_2})=\widetilde{\Lambda_{out}}$$

More general superchannels?

$$\widetilde{\widetilde{S}}(\widetilde{\Lambda_1}\otimes\widetilde{\Lambda_2})=\widetilde{\Lambda_{out}}$$

Process Matrices! (May have an indefinite causal order)

- G. Chiribella, G. M. D'Ariano, P. Perinotti, and B. Valiron, PRA (2013)
- O. Oreshkov, F. Costa, and Č. Brukner, Nature Communications (2012)

 Process matrices with indefinite causal order are not (explicitly) forbidden by quantum mechanics

- Process matrices with indefinite causal order are not (explicitly) forbidden by quantum mechanics
- Upper bounds and ansatz

- Process matrices with indefinite causal order are not (explicitly) forbidden by quantum mechanics
- Upper bounds and ansatz
- Sometimes useless

- Process matrices with indefinite causal order are not (explicitly) forbidden by quantum mechanics
- Upper bounds and ansatz
- Sometimes useless
- Sometimes useful (but with limited power)

Summary of results

Deterministic unitary inversion: $U^{\otimes k} \stackrel{\approx}{\mapsto} U^{-1}$

	Parallel	Sequential	General
k=1	$F = \frac{2}{d^2}$	$F = \frac{2}{d^2}$	$F = \frac{2}{d^2}$
d=2	$F = 1 - \sin^2\left(\frac{\pi}{k+3}\right)$?	?
(d,k)	$ M_{\mathrm{est}} $?	?
$k \to \infty$	$F \approx 1 - \frac{1}{k^2}$	$1 - \frac{1}{e^k} \le F \le ?$?
Estimation	$F_{\rm par} = F_{\rm est}$	N/A	N/A
PBT	?	N/A	N/A
$k \le d-1$	$F = \frac{k+1}{d^2}$	$F = \frac{k+1}{d^2}$	$F = \frac{k+1}{d^2}$
d = 2, k = 4	$F = 1 - \sin^2\left(\frac{\pi}{7}\right)$	F=1	F=1
d = 2, k = 2	$F = 1 - \sin^2\left(\frac{\pi}{5}\right)$	$F = \frac{3}{4}$	$F \approx 0.8249$
d = 3, k = 2	$F = \frac{1}{3}$	$F = \frac{1}{3}$	$F = \frac{1}{3}$

Summary of results

Deterministic unitary inversion: $U^{\otimes k} \stackrel{\approx}{\mapsto} U^{-1}$			Dete	erministic unitary tran	sposition: $U^{\otimes k} \stackrel{\approx}{\mapsto}$	$\cdot U^T$	
	Parallel	Sequential	General		Parallel	Sequential	General
k = 1	$F = \frac{2}{d^2}$	$F = \frac{2}{d^2}$	$F = \frac{2}{d^2}$	k = 1	$F = \frac{2}{d^2}$	$F = \frac{2}{d^2}$	$F = \frac{2}{d^2}$
d = 2	$F = 1 - \sin^2\left(\frac{\pi}{k+3}\right)$?	?	d = 2	$F = 1 - \sin^2\left(\frac{\pi}{k+3}\right)$?	?
(d,k)	$ M_{est} $?	?	(d,k)	$ M_{est} $?	?
$k \to \infty$	$F \approx 1 - \frac{1}{k^2}$	$1 - \frac{1}{e^k} \le F \le ?$?	$k \to \infty$	$F \approx 1 - \frac{1}{k^2}$	$1 - \frac{1}{e^k} \le F \le ?$?
Estimation	$F_{\text{par}} = F_{\text{est}}$	N/A	N/A	Estimation	$F_{\text{par}} = F_{\text{est}}$	N/A	N/A
PBT	?	N/A	N/A	PBT	?	N/A	N/A
$k \le d-1$	$F = \frac{k+1}{d^2}$	$F = \frac{k+1}{d^2}$	$F = \frac{k+1}{d^2}$	$k \le d-1$	$F = \frac{k+1}{d^2}$?	?
d = 2, k = 4	$F = 1 - \sin^2(\frac{\pi}{7})$	F = 1	F = 1	d = 2, k = 4	$F = 1 - \sin^2\left(\frac{\pi}{7}\right)$	F = 1	F = 1
d = 2, k = 2	$F = 1 - \sin^2\left(\frac{\pi}{5}\right)$	$F = \frac{3}{4}$	$F \approx 0.8249$	d = 2, k = 2	$F = 1 - \sin^2\left(\frac{\pi}{5}\right)$	$F = \frac{3}{4}$	$F \approx 0.8249$
d = 3, k = 2	$F = \frac{1}{3}$	$F = \frac{1}{3}$	$F = \frac{1}{3}$	d = 3, k = 2	$F = \frac{1}{3}$	$F \approx 0,4074$	F = 0.4349

Summary of results

Deterministic	unitary	inversion:	$U^{\otimes k}$	$\stackrel{\sim}{\mapsto}$	U^{-}	1

	Parallel	Sequential	General			
k = 1	$F = \frac{2}{d^2}$	$F = \frac{2}{d^2}$	$F = \frac{2}{d^2}$			
d = 2	$F = 1 - \sin^2\left(\frac{\pi}{k+3}\right)$?	?			
(d, k)	$ M_{est} $?	?			
$k \to \infty$	$F \approx 1 - \frac{1}{k^2}$	$1 - \frac{1}{e^k} \le F \le ?$?			
Estimation	$F_{\text{par}} = F_{\text{est}}$	N/A	N/A			
PBT	?	N/A	N/A			
$k \le d-1$	$F = \frac{k+1}{d^2}$	$F = \frac{k+1}{d^2}$	$F = \frac{k+1}{d^2}$			
d = 2, k = 4	$F = 1 - \sin^2\left(\frac{\pi}{7}\right)$	F = 1	F = 1			
d = 2, k = 2	$F = 1 - \sin^2\left(\frac{\pi}{5}\right)$	$F = \frac{3}{4}$	$F \approx 0.8249$			
d = 3, k = 2	$F = \frac{1}{3}$	$F = \frac{1}{3}$	$F = \frac{1}{3}$			

Probabilistic unitary inversion: $U^{\otimes k} \mapsto p \, U^{-1}$

	Parallel	Sequential	General
k = 1	$p = \frac{1}{d^2}$	$p = \frac{1}{d^2}$	$p = \frac{1}{d^2}$
d = 2	$p = 1 - \frac{3}{k+3}$?	?
(d, k)	?	?	?
$k \to \infty$	$p \approx 1 - \frac{1}{k}$	$1 - \frac{1}{e^k} \le p \le ?$?
Store-retrieve	?	N/A	N/A
PBT	?	N/A	N/A
$k \le d-1$?	?	?
d = 2, k = 4	$p = \frac{4}{7}$	p = 1	p = 1
d = 2, k = 2	$p = \frac{2}{5}$	$p = \frac{3}{7}$	$p \approx 4/9$
d = 3, k = 2	$p \approx \frac{1}{9}$	$p \approx \frac{1}{9}$	$p \approx \frac{1}{9}$

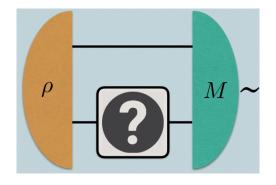
Deterministic unitary transposition: $U^{\otimes \kappa} \mapsto U^{T}$				
	Parallel	Sequential	General	
k = 1	$F = \frac{2}{d^2}$	$F = \frac{2}{d^2}$	$F = \frac{2}{d^2}$	
d = 2	$F = 1 - \sin^2\left(\frac{\pi}{k+3}\right)$?	?	
(d,k)	$ M_{est} $?	?	
$k \to \infty$	$F \approx 1 - \frac{1}{k^2}$	$1 - \frac{1}{e^k} \le F \le ?$?	
Estimation	$F_{\text{par}} = F_{\text{est}}$	N/A	N/A	
PBT	?	N/A	N/A	
$k \le d-1$	$F = \frac{k+1}{d^2}$?	?	
d = 2, k = 4	$F = 1 - \sin^2\left(\frac{\pi}{7}\right)$	F = 1	F = 1	
d = 2, k = 2	$F = 1 - \sin^2(\frac{\pi}{5})$	$F = \frac{3}{4}$	$F \approx 0.8249$	
d = 3, k = 2	$F = \frac{1}{3}$	$F \approx 0,4074$	F = 0.4349	

Probabilistic unitary transposition: $U^{\otimes \kappa} \mapsto p U^{T}$					
	Parallel	Sequential	General		
k = 1	$p = \frac{1}{d^2}$	$p = \frac{1}{d^2}$	$p = \frac{1}{d^2}$		
d = 2	$p = 1 - \frac{3}{k+3}$?	?		
(d,k)	$p = 1 - \frac{d^2-1}{k+d^2-1}$?	?		
$k \to \infty$	$p \approx 1 - \frac{1}{k}$	$1 - \frac{1}{e^k} \le p \le ?$?		
Store-retrieve	$p_{\text{par}} = p_{\text{s-r}}$	N/A	N/A		
PBT	$p_{\rm par} = p_{\rm pbt}$	N/A	N/A		
$k \le d - 1$	$p = 1 - \frac{d^2 - 1}{k + d^2 - 1}$?	?		
d = 2, k = 4	$p = \frac{4}{7}$	p = 1	p = 1		
d = 2, k = 2	$p = \frac{2}{5}$	$p = \frac{3}{7}$	$p \approx 4/9$		
d = 3, k = 2	$p = \frac{2}{10}$	$ppproxrac{2}{9}$	$p \approx \frac{2}{8}$		

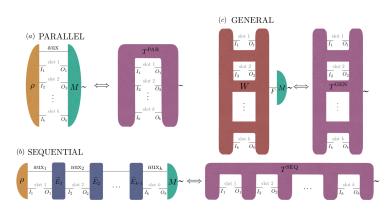
Measuring quantum operations

How can one perform a measurement on a quantum operation?

Measuring quantum operations



Measuring quantum operations



- J. Bavaresco, M. Murao, MTQ PRL (2021)
- J. Bavaresco, M. Murao, MTQ J. Math. Phys. (2022)

► Two unitaries ⇒ parallel is optimal G. Chiribella, G. M. D'Ariano, P. Perinotti PRL (2008)

- ► Two unitaries ⇒ parallel is optimal G. Chiribella, G. M. D'Ariano, P. Perinotti PRL (2008)
- lackbox Uniform unitaries + a group structure \Longrightarrow parallel is optimal
 - G. Chiribella, G. M. D'Ariano, P. Perinotti, PRL (2008)
 - J. Bavaresco, M. Murao, MTQ, J. Math. Phys. (2022)

- ► Two unitaries ⇒ parallel is optimal G. Chiribella, G. M. D'Ariano, P. Perinotti PRL (2008)
- ▶ Uniform unitaries + a group structure ⇒ parallel is optimal
 G. Chiribella, G. M. D'Ariano, P. Perinotti, PRL (2008)
 J. Bavaresco, M. Murao, MTQ, J. Math. Phys. (2022)
- ▶ Non-symmetric scenarios? Non-unitary quantum channels?

- ► Two unitaries ⇒ parallel is optimal
 G. Chiribella, G. M. D'Ariano, P. Perinotti PRL (2008)
- lacktriangle Uniform unitaries + a group structure \implies parallel is optimal
 - G. Chiribella, G. M. D'Ariano, P. Perinotti, PRL (2008)
 - J. Bavaresco, M. Murao, MTQ, J. Math. Phys. (2022)
- ▶ Non-symmetric scenarios? Non-unitary quantum channels?
- ► Almost always, we have a strict hierarchy!
 - J. Bavaresco, M. Murao, MTQ PRL (2021)
 - J. Bavaresco, M. Murao, MTQ J. Math. Phys. (2022)

► Superchannels are nice

- ► Superchannels are nice
- ► Powerful mathematical tools for higher-order quantum computing: Semidefinite Programming, group representation

- Superchannels are nice
- ► Powerful mathematical tools for higher-order quantum computing: Semidefinite Programming, group representation
- Transformation between quantum operations

- Superchannels are nice
- Powerful mathematical tools for higher-order quantum computing: Semidefinite Programming, group representation
- ► Transformation between quantum operations
- Discrimination between quantum operations

- Superchannels are nice
- ► Powerful mathematical tools for higher-order quantum computing: Semidefinite Programming, group representation
- ► Transformation between quantum operations
- Discrimination between quantum operations
- New methods, results, and concepts

- Superchannels are nice
- ► Powerful mathematical tools for higher-order quantum computing: Semidefinite Programming, group representation
- ► Transformation between quantum operations
- Discrimination between quantum operations
- New methods, results, and concepts
- Power and limitation of indefinite causality

- ► Superchannels are nice
- Powerful mathematical tools for higher-order quantum computing: Semidefinite Programming, group representation
- ► Transformation between quantum operations
- Discrimination between quantum operations
- New methods, results, and concepts
- Power and limitation of indefinite causality
- ► Can we have deterministic exact unitary inversion with finite sequential circuits?

- Superchannels are nice
- Powerful mathematical tools for higher-order quantum computing: Semidefinite Programming, group representation
- ► Transformation between quantum operations
- Discrimination between quantum operations
- New methods, results, and concepts
- Power and limitation of indefinite causality
- ► Can we have deterministic exact unitary inversion with finite sequential circuits?
- ▶ Practical and realistic implementations

Thank you!

Jisho Miyazaki

Atsushi Shimbo

Qingxiuxiong Dong

Satoshi Yoshida

Akihito Soeda

Jessica Bavaresco

Michał Studziński

Michał Horodecki

Tomasz Młynik

Daniel Ebler

Thank you!

