Simulating qubit correlations with classical communication

Martin Renner, Armin Tavakoli, Marco Túlio Quintino

Sorbonne Université, CNRS, LIP6

SORBONNE UNIVERSITÉ

PRL 130, 120801 (2023), arXiv:2207.02244

The prepare and measure scenario

The prepare and measure scenario

$\downarrow^{b \in\{0, \ldots, N\}}$

$\boldsymbol{\downarrow}^{b \in\{0, \ldots, N\}}$

The prepare and measure scenario

Qubits are better!

$$
0 \mapsto|0\rangle, \quad 1 \mapsto|1\rangle
$$

The prepare and measure scenario

Qubits are strictly better!!

Random Access Coding

win if $b=x_{y}$

Random Access Coding

win if $b=x_{y}$

$$
p_{\text {classic }} \leq \frac{3}{4}
$$

Random Access Coding

win if $b=x_{y}$

Random Access Coding

win if $b=x_{y}$

$$
p_{\text {quantum }} \leq \frac{2+\sqrt{2}}{4} \approx 85 \%
$$

Random Access Coding

What if Alice sends 2 bits?

Prepare-and-Measure

$\downarrow^{b \in\{0, \ldots, N\}}$

$$
\boldsymbol{\downarrow}^{b \in\{0, \ldots, N\}}
$$

Quantum teleportation

No extra resource?

$$
\downarrow^{b \in}\{0, \ldots, N\}
$$

Qubit simulation requires unlimited shared randomness

$$
b \in\{0, \ldots, N\}
$$

Prepare and Measure with Shared Randomness

The problem:

Previous status:

- Toner and Bacon (PRL, 2003): If Bob performs projective measurements, 2 bits +SR can simulate a qubit!

Previous status:

- Toner and Bacon (PRL, 2003): If Bob performs projective measurements, 2 bits + SR can simulate a qubit!
- POVMs?

Previous status:

- Toner and Bacon (PRL, 2003): If Bob performs projective measurements, 2 bits +SR can simulate a qubit!
- POVMs?
- POVMs allow us to go beyond dichotomic scenarios

Previous status:

- Toner and Bacon (PRL, 2003): If Bob performs projective measurements, 2 bits +SR can simulate a qubit!
- POVMs?
- POVMs allow us to go beyond dichotomic scenarios
- POVMs do exist!

Previous status:

- Toner and Bacon (PRL, 2003): If Bob performs projective measurements, 2 bits +SR can simulate a qubit!
- POVMs?
- POVMs allow us to go beyond dichotomic scenarios
- POVMs do exist!
- POVMs are known to outperform projective measurements in several similar cases...

Previous status:

- Toner and Bacon (PRL, 2003): If Bob performs projective measurements, 2 bits +SR can simulate a qubit!
- POVMs?
- POVMs allow us to go beyond dichotomic scenarios
- POVMs do exist!
- POVMs are known to outperform projective measurements in several similar cases...
- Unambiguous state discrimination

Unbounded randomness certification, PRA 95, 020102(R) (2017) Several PM tasks, PRA 92, 042117 (2015) etc...

Previous status:

- Toner and Bacon (PRL, 2003): If Bob performs projective measurements, 2 bits +SR can simulate a qubit!
- POVMs?
- POVMs allow us to go beyond dichotomic scenarios
- POVMs do exist!
- POVMs are known to outperform projective measurements in several similar cases...
- Unambiguous state discrimination

Unbounded randomness certification, PRA 95, 020102(R) (2017) Several PM tasks, PRA 92, 042117 (2015) etc...

- How about 1trit+SR?

Previous status:

- Toner and Bacon (PRL, 2003): If Bob performs projective measurements, 2 bits +SR can simulate a qubit!
- POVMs?
- POVMs allow us to go beyond dichotomic scenarios
- POVMs do exist!
- POVMs are known to outperform projective measurements in several similar cases...
- Unambiguous state discrimination Unbounded randomness certification, PRA 95, 020102(R) (2017) Several PM tasks, PRA 92, 042117 (2015) etc...
- How about 1trit+SR?
- Buhrman, Cleve, Massar, de Wolf, Rev. Mod. Phys. (2010). Non-locality and communication complexity Many results, but not much about minimal worst case scenarios. . .

Our goal:

- 1: Analyse the trit vs Qubit case in detail

Our goal:

- 1: Analyse the trit vs Qubit case in detail
- 2: Understand the power and limitations of POVMs

1: Trits vs Qubits

1: Trits vs Qubits

For some tasks, a trit is better than qubit

1: Trits vs Qubits

win if $b=x_{y}$

$$
p_{\text {trit }} \leq \frac{7}{8}
$$

1: Trits vs Qubits

For some tasks, a trit is better than qubit (Holevo bound!)

1: Trits vs Qubits

1: Question?

Are trits strictly better than qubits?

RESULT 1

Are trits strictly better than qubits?
No!

RESULT 1

For some tasks, a qubit is better than trit

RESULT 1

RESULT 1

RESULT 1 methods

- Recognise that the problem is a linear program (even with robustness considered)

RESULT 1 methods

- Recognise that the problem is a linear program (even with robustness considered)
- Optimisation trick to reduce complexity

RESULT 1 methods

- Recognise that the problem is a linear program (even with robustness considered)
- Optimisation trick to reduce complexity
- Find a PM task via the dual problem

RESULT 1 methods

- Recognise that the problem is a linear program (even with robustness considered)
- Optimisation trick to reduce complexity
- Find a PM task via the dual problem
- Extract a computer-assisted proof (as in Bavaresco, Murao, Quintino, PRL 127, 200504 (2021))

RESULT 1 methods

- Recognise that the problem is a linear program (even with robustness considered)
- Optimisation trick to reduce complexity
- Find a PM task via the dual problem
- Extract a computer-assisted proof (as in Bavaresco, Murao, Quintino, PRL 127, 200504 (2021))
- Various examples, minimal: 6 preparations, 11 measurements

2: POVMs?

2: POVMs?

Are 2bits strictly better than 1qubit?

2: POVMs?

Are 2bits strictly better than 1qubit?

2: POVMs?

Are 2bits strictly better than 1qubit?
YES!

RESULT 2

2 bits $+S R$ is strictly better than qubits!

RESULT 2

Proof: Explicit recipe for classical simulation

RESULT 2 methods

use the Bloch sphere to states and POVM elements

RESULT 2 methods

- $\lambda:=\left(\overrightarrow{\lambda_{1}}, \overrightarrow{\lambda_{2}}\right)$, random vectors on the sphere

RESULT 2 methods

- $\lambda:=\left(\overrightarrow{\lambda_{1}}, \overrightarrow{\lambda_{2}}\right)$, random vectors on the sphere
- Instead of $\rho=\frac{1}{2}(I+\vec{x} \cdot \vec{\sigma})$, Alice sends $c_{1}=H\left(\vec{x} \cdot \vec{\lambda}_{1}\right)$ and $c_{2}=H\left(\vec{x} \cdot \vec{\lambda}_{2}\right)$
Heaviside: $H(x)=1$ if $x \geq 0, H(x)=0$ if $x<0)$.

RESULT 2 methods

- $\lambda:=\left(\overrightarrow{\lambda_{1}}, \overrightarrow{\lambda_{2}}\right)$, random vectors on the sphere
- Instead of $\rho=\frac{1}{2}(I+\vec{x} \cdot \vec{\sigma})$, Alice sends $c_{1}=H\left(\vec{x} \cdot \vec{\lambda}_{1}\right)$ and $c_{2}=H\left(\vec{x} \cdot \vec{\lambda}_{2}\right)$
Heaviside: $H(x)=1$ if $x \geq 0, H(x)=0$ if $x<0)$.
- Bob finds the Bloch vectors for the POVM elements, $B_{b}=p_{b}\left(I+\overrightarrow{y_{b}} \cdot \vec{\sigma}\right)$ then sets $\vec{\lambda}:=(-1)^{1+c_{1}} \overrightarrow{\lambda_{1}}$ when $\left|\vec{\lambda}_{1} \cdot \vec{y}_{b}\right| \geq\left|\vec{\lambda}_{2} \cdot \vec{y}_{b}\right|$ and $\vec{\lambda}:=(-1)^{1+c_{2}} \vec{\lambda}_{2}$ otherwise.

RESULT 2 methods

- $\lambda:=\left(\overrightarrow{\lambda_{1}}, \overrightarrow{\lambda_{2}}\right)$, random vectors on the sphere
- Instead of $\rho=\frac{1}{2}(I+\vec{x} \cdot \vec{\sigma})$, Alice sends $c_{1}=H\left(\vec{x} \cdot \vec{\lambda}_{1}\right)$ and $c_{2}=H\left(\vec{x} \cdot \vec{\lambda}_{2}\right)$
Heaviside: $H(x)=1$ if $x \geq 0, H(x)=0$ if $x<0)$.
- Bob finds the Bloch vectors for the POVM elements, $B_{b}=p_{b}\left(I+\overrightarrow{y_{b}} \cdot \vec{\sigma}\right)$ then sets $\vec{\lambda}:=(-1)^{1+c_{1}} \overrightarrow{\lambda_{1}}$ when $\left|\vec{\lambda}_{1} \cdot \vec{y}_{b}\right| \geq\left|\vec{\lambda}_{2} \cdot \vec{y}_{b}\right|$ and $\vec{\lambda}:=(-1)^{1+c_{2}} \vec{\lambda}_{2}$ otherwise.
- Finally, Bob outputs b with probability:

$$
\begin{gathered}
p\left(b \mid\left\{\vec{y}_{b}\right\}_{b}, \lambda\right)=\frac{p_{b} \Theta\left(\vec{y}_{b} \cdot \vec{\lambda}\right)}{\sum_{j=1}^{n} p_{j} \Theta\left(\vec{y}_{j} \cdot \vec{\lambda}\right)} \\
\Theta(x):= \begin{cases}x & \text { if } x \geq 0 \\
0 & \text { if } x<0 .\end{cases}
\end{gathered}
$$

RESULT 2 methods

RESULT 2 methods

Why it works?

RESULT 2 methods

Why it works? Well. . .

\forall qubit $\rho, \forall \operatorname{POVM}\left\{M_{b}\right\}$

$$
\int_{\lambda} \mathrm{d} \lambda \pi(\lambda) \sum_{c=1}^{4} p_{A}(c \mid \rho, \lambda) p_{B}\left(b \mid\left\{M_{b}\right\}, c, \lambda\right)=\operatorname{tr}\left(\rho M_{b}\right)
$$

RESULT 2 methods

Why it works?

Lemma 1. Given two normalized vectors $\vec{x}, \vec{y} \in \mathbb{R}^{3}$ on the unit sphere S_{2}, it holds that:

$$
\frac{1}{\pi} \int_{S_{2}} H(\vec{x} \cdot \vec{\lambda}) \cdot \Theta(\vec{y} \cdot \vec{\lambda}) \mathrm{d} \vec{\lambda}=\frac{1}{2}(1+\vec{x} \cdot \vec{y})
$$

where $H(z)$ is the Heaviside function $(H(z)=1$ if $z \geq 0$ and $H(z)=0$ if $z<0)$ and $\Theta(z):=H(z) \cdot z$.

RESULT 2 extra

- The fraction of rounds in which Alice is communicating only a single bit to Bob has measure zero.

RESULT 2 extra

- The fraction of rounds in which Alice is communicating only a single bit to Bob has measure zero.
- This holds for any protocol that exactly simulates any qubit strategy in a prepare-and-measure scenario.

Implications to Bell Nonlocality

Implications to Bell Nonlocality

Implications to Bell Nonlocality

Implications to Bell Nonlocality

Implications to Bell Nonlocality

Implications to Bell Nonlocality

Outlook

- 2bits $+S R>1 q$ bit (PM scenario)

Outlook

- 2bits + SR $>$ 1qbit (PM scenario)
- even with general POVM measurements!

Outlook

- 2bits + SR $>$ 1qbit (PM scenario)
- even with general POVM measurements!
- No hierarchy between 1trit and 1qubit (PM scenario)

Outlook

- 2bits + SR $>$ 1qbit (PM scenario)
- even with general POVM measurements!
- No hierarchy between 1trit and 1qubit (PM scenario)
- 2 bits of communication > two-qubit states (Bell scenario)

Outlook

- 2bits + SR $>$ 1qbit (PM scenario)
- even with general POVM measurements!
- No hierarchy between 1trit and 1qubit (PM scenario)
- 2 bits of communication > two-qubit states (Bell scenario)
- even with general POVM measurements!

Open problems

- How about qutrits??

Open problems

- How about qutrits??
- Not even clear if it can be done with finite classical communication... (even in the projective case)

Open problems

- How about qutrits??
- Not even clear if it can be done with finite classical communication... (even in the projective case)
- Prepare-and-measure models and Bell with communication models?

Open problems

- How about qutrits??
- Not even clear if it can be done with finite classical communication... (even in the projective case)
- Prepare-and-measure models and Bell with communication models?
- Minimal models for Bell with communication are different!

Open problems

- How about qutrits??
- Not even clear if it can be done with finite classical communication. . (even in the projective case)
- Prepare-and-measure models and Bell with communication models?
- Minimal models for Bell with communication are different!
- e.g., One trit is enough to simulate two-qubit Bell correlations

The minimal communication cost for simulating entangled qubits, arXiv:2207.12457
M. Renner, M.T. Quintino

Open problems

- How about qutrits??
- Not even clear if it can be done with finite classical communication... (even in the projective case)
- Prepare-and-measure models and Bell with communication models?
- Minimal models for Bell with communication are different!
- e.g., One trit is enough to simulate two-qubit Bell correlations

The minimal communication cost for simulating entangled qubits, arXiv:2207.12457 M. Renner, M.T. Quintino

- e.g., One bit might be enough to simulate two-qubit Bell correlations

Classical Simulation of Two-Qubit Entangled States with One Bit of Communication, arXiv:2305.19935
P. Sidajaya, A. D. Lim, B. Yu, V. Scarani

Thank you!

