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Quantum state transformations

|ψin⟩ 7→ |ψout⟩ = U|ψin⟩

U†U = I
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Quantum state transformations

ρin 7→ ρout = Λ̃(ρin)

Λ̃ is CPTP
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Quantum operation transformations

Can we transform quantum
operations??

Uin 7→ Uout

Λ̃in 7→ Λ̃out



”Quantum“ unitary inversion

Ud 7→ U−1
d



The universal/unknown paradigm

σZ =

[
1 0
0 −1

]
= σ−1

Z



What do we want?



What do we want?

Ideally. . .
Something like this:

Phys. Rev. Research (2019)
J. Miyazaki, A. Soeda, and M. Murao
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▶ Universal (also works for “unknown” d-dimensional unitary)

▶ Exact
▶ Possible?
▶ Optimal average fidelity: Fmax = 2

d2

G. Chiribella and D. Ebler, New Journal of Physics (2016)
▶ Fmax < 1 =⇒ Impossible. . .
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What do we want?

Probabilistic heralded?



What do we want?

Probabilistic heralded?
For qubits, Possible!



Explicit construction



Explicit construction



Delayed input state protocols



We want more!

▶ Is it optimal?

▶ Qubits are nice, but what about general qudits?
▶ How can we increase the success probability?
▶ Higher-order operations and supermaps!
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Superchannels

The most general quantum superchannel?
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˜̃S : [L(H2) → L(H3)] → [L(H1) → L(H4)]

▶ ˜̃S is a linear supermap

▶ ˜̃S maps valid channels into valid channels
(TP preserving, CP preserving)

▶ ˜̃S may be applied into part of channel
(completely CP preserving)
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Superchannels

˜̃S(Λ̃in) = trA

(
D̃ ◦

(
Λ̃in ⊗ ĨA

)
◦ Ẽ

)
G. Chiribella, G. M. D’Ariano, and P. Perinotti EPL (2008)
K. Życzkowski J. Phys. A 41, 355302-23 (2008)
G. Gutoski and J. Watrous Proceedings of STOC (2007)



Superchannels

˜̃S : [L(H2) → L(H3)] → [L(H1) → L(H4)]

▶ How to represent such mathematical objects?

▶ Choi–Jamiołkowski isomorphism!!
▶ Maps Λ̃ : L(H2) → L(H3) become matrices

Λ ∈ L(H2 ⊗H3).

▶ Supermaps ˜̃S become maps S̃ : L(H2 ⊗H3) → L(H1 ⊗H4)

▶ Maps S̃ become matrices S ∈ L(H1 ⊗H2 ⊗H3 ⊗ H4)
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Superchannels

S ∈ L(H1 ⊗H2 ⊗H3 ⊗ H4) is a superchannel iff

S ≥ 0

tr4(S) = tr34(S)⊗
I4

d4

tr234(S) = tr1234(S)⊗
I2

d2

tr(S) = d1d3



Superchannels

S ∈ L(H1 ⊗H2 ⊗H3 ⊗ H4) is a superchannel iff

S ≥ 0

tr4(S) = tr34(S)⊗
I4

d4

tr234(S) = tr1234(S)⊗
I2

d2

tr(S) = d1d3

Affine and positive semidefinite constraints =⇒ SDP!!



We want more!

▶ Is it optimal?

▶ Yes! d = 2 =⇒ p ≤ 1
4

▶ Qubits are nice, but what about general qudits?
▶ d > 2 =⇒ p = 0
▶ How can we increase the success probability?
▶ More calls/copies
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We want more!
▶ Is it optimal?
▶ Yes! d = 2 =⇒ p ≤ 1

4
▶ Qubits are nice, but what about general qudits?
▶ d > 2 =⇒ p = 0
▶ How can we increase the success probability?
▶ More calls/copies

(Quantum combs, channel with memory, quantum strategy, quantum

superchannels with multiple inputs)



Results

▶ Parallel (d = 2): p = 1 − 3
k+3

▶ Parallel (k < d − 1): p = 0
▶ Parallel (k ≥ d − 1):

1 − 1
k ∼ 1 − d2−1

⌊ k
d−1 ⌋+d2−1

≤ p ≤ 1 − d2−1
k(d−1)+d2−1 ∼ 1 − 1

k

▶ Optimal parallel =⇒ delayed input-state
▶ Sequential (k < d − 1): p = 0

▶ Sequential (k ≥ d − 1): p ≥ 1 −
(
1 − 1

d2

)⌈ k+2−d
d ⌉ ∼ 1 − 1

ek MTQ,

Q. Dong, A. Shimbo, A. Soeda, M. Murao
PRA (2019), PRL (2019)
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Qubit adaptive circuit



Qubit adaptive circuit

If we fail, we “destroy” the unknown input state...
then we cannot re-iterate this protocol...



Qubit adaptive circuit

But well. . .
if we can use U2 once more:
apply X−iZ−jU2 to recover the input state!



Success or draw



Success or draw

With k uses, this approach leads to a success probability of

ps = 1 − (1 − pdraw)
k



Success or draw

Theorem
Success or draw is always possible!

Q. Dong, MTQ, A. Soeda, M. Murao
PRL (2021)



Arbitrary functions f (Ud)



Deterministic protocols?

▶ Deterministic non-exact is also interesting!

▶ Average channel fidelity (over the Haar measure)
▶ Maximal white noise visibility
▶ Parallel inversion = Parallel transposition = Unitary estimation

MTQ, D. Ebler, Quantum 2022
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Physics Letters A (2014)
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Solving the homomorphic case
▶ When f : SU(d) → SU(d) and f (UV) = f (U)f (V), we know

“everything”.

▶ Step 1: There are only three homomorphisms f : SU(d) → SU(d)
f (U) = U, f (U) = I, f (U) = U.

▶ Step 2: construct a circuit with F = k+1
d(d−1)

▶ Step 3: use SDP duality and group theoretic results on
Young-Tableau to prove F ≤ k+1

d(d−1)
IEEE Transactions on Information Theory
D. Ebler, M. Horodecki, M. Marciniak, T. Młynik, MTQ, M. Studziński

▶ Step 4: prove that if k < d − 1, p = 0
PRA
MTQ, Q. Dong, A. Shimbo, A. Soeda, M. Murao
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Progress on the anti-homomorphic case

▶ f (UV) = f (V)f (U)

▶ There are only two homomorphisms f : SU(d) → SU(d)
f (U) = UT and f (U) = U−1.

▶ Sequential circuits exponentially outperform parallel ones
▶ But, there are still various open questions. . .
▶ For instance: when d = 2 we have

PRL, S. Yoshida, A. Soeda, M. Murao
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More general superchannels?

Can we go beyond sequential
quantum circuits?



Quantum Switch

Quantum computations without definite causal structure
G. Chiribella, G. M. D’Ariano, P. Perinotti, B. Valiron
PRA 2013
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More general superchannels?

˜̃S(Λ̃1 ⊗ Λ̃2) = Λ̃out

Process Matrices! (May have an indefinite causal order)
G. Chiribella, G. M. D’Ariano, P. Perinotti, and B. Valiron, PRA (2013)
O. Oreshkov, F. Costa, and Č. Brukner, Nature Communications (2012)
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(explicitly) forbidden by quantum mechanics

▶ Upper bounds and ansatz
▶ Sometimes useless
▶ Sometimes useful (but with limited power)
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Measuring quantum operations

How can one perform a measurement
on a quantum operation?



Measuring quantum operations



Measuring quantum operations

J. Bavaresco, M. Murao, MTQ PRL (2021)
J. Bavaresco, M. Murao, MTQ J. Math. Phys. (2022)



Quantum channel discrimination

▶ Two unitaries =⇒ parallel is optimal
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▶ Uniform unitaries + a group structure =⇒ parallel is optimal
G. Chiribella, G. M. D’Ariano, P. Perinotti, PRL (2008)
J. Bavaresco, M. Murao, MTQ, J. Math. Phys. (2022)

▶ Non-symmetric scenarios? Non-unitary quantum channels?

▶ Almost always, we have a strict hierarchy!
J. Bavaresco, M. Murao, MTQ PRL (2021)
J. Bavaresco, M. Murao, MTQ J. Math. Phys. (2022)

▶ SDP duality theory + indefinite causal order methods =⇒
“universal upper bound” on unitary channel discrimination
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