Transforming and discriminating quantum operations using higher-order methods

Marco Túlio Quintino

Sorbonne Université, CNRS, LIP6

October 24, 2023

Quantum state transformations

$$
\left|\psi_{\mathrm{in}}\right\rangle \mapsto\left|\psi_{\text {out }}\right\rangle
$$

Quantum state transformations

$$
\begin{gathered}
\left|\psi_{\text {in }}\right\rangle \mapsto\left|\psi_{\text {out }}\right\rangle=U\left|\psi_{\text {in }}\right\rangle \\
U^{\dagger} U=I
\end{gathered}
$$

Quantum state transformations

$\rho_{\text {in }} \longmapsto \rho_{\text {out }}$

Quantum state transformations

$$
\begin{gathered}
\rho_{\text {in }} \mapsto \rho_{\text {out }}=\widetilde{\Lambda}\left(\rho_{\text {in }}\right) \\
\widetilde{\Lambda} \text { is CPTP }
\end{gathered}
$$

Quantum operation transformations

Can we transform quantum operations??

Quantum operation transformations

Can we transform quantum operations??

$U_{\text {in }} \mapsto U_{\text {out }}$

Quantum operation transformations

Can we transform quantum operations??
$U_{\text {in }} \mapsto U_{\text {out }}$
$\widetilde{\Lambda_{\text {in }}} \mapsto \widetilde{\Lambda_{\text {out }}}$

$$
U_{d} \mapsto U_{d}^{-1}
$$

The universal/unknown paradigm

$$
\sigma_{Z}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]=\sigma_{Z}^{-1}
$$

What do we want?

What do we want?

Ideally...
Something like this:

Phys. Rev. Research (2019)
J. Miyazaki, A. Soeda, and M. Murao

What do we want?

- Universal (also works for "unknown" d-dimensional unitary)

What do we want?

- Universal (also works for "unknown" d-dimensional unitary)
- Exact

What do we want?

- Universal (also works for "unknown" d-dimensional unitary)
- Exact
- Possible?

What do we want?

- Universal (also works for "unknown" d-dimensional unitary)
- Exact
- Possible?
- Optimal average fidelity: $F_{\max }=\frac{2}{d^{2}}$
G. Chiribella and D. Ebler, New Journal of Physics (2016)

What do we want?

- Universal (also works for "unknown" d-dimensional unitary)
- Exact
- Possible?
- Optimal average fidelity: $F_{\max }=\frac{2}{d^{2}}$
G. Chiribella and D. Ebler, New Journal of Physics (2016)
- $F_{\max }<1 \Longrightarrow$ Impossible...

What do we want?

Probabilistic heralded?

What do we want?

Probabilistic heralded? For qubits, Possible!

Explicit construction

Explicit construction

Delayed input state protocols

We want more!

- Is it optimal?

We want more!

- Is it optimal?
- Qubits are nice, but what about general qudits?

We want more!

- Is it optimal?
- Qubits are nice, but what about general qudits?
- How can we increase the success probability?

We want more!

- Is it optimal?
- Qubits are nice, but what about general qudits?
- How can we increase the success probability?
- Higher-order operations and supermaps!

Superchannels

The most general quantum superchannel?

Superchannels

$$
\widetilde{\widetilde{S}}:\left[\mathcal{L}\left(\mathcal{H}_{2}\right) \rightarrow \mathcal{L}\left(\mathcal{H}_{3}\right)\right] \rightarrow\left[\mathcal{L}\left(\mathcal{H}_{1}\right) \rightarrow \mathcal{L}\left(\mathcal{H}_{4}\right)\right]
$$

- $\widetilde{\widetilde{S}}$ is a linear supermap

Superchannels

$$
\widetilde{\widetilde{S}}:\left[\mathcal{L}\left(\mathcal{H}_{2}\right) \rightarrow \mathcal{L}\left(\mathcal{H}_{3}\right)\right] \rightarrow\left[\mathcal{L}\left(\mathcal{H}_{1}\right) \rightarrow \mathcal{L}\left(\mathcal{H}_{4}\right)\right]
$$

- $\widetilde{\widetilde{S}}$ is a linear supermap
- $\widetilde{\widetilde{S}}$ maps valid channels into valid channels (TP preserving, CP preserving)

Superchannels

$$
\widetilde{\widetilde{S}}:\left[\mathcal{L}\left(\mathcal{H}_{2}\right) \rightarrow \mathcal{L}\left(\mathcal{H}_{3}\right)\right] \rightarrow\left[\mathcal{L}\left(\mathcal{H}_{1}\right) \rightarrow \mathcal{L}\left(\mathcal{H}_{4}\right)\right]
$$

- $\widetilde{\widetilde{S}}$ is a linear supermap
- $\widetilde{\widetilde{S}}$ maps valid channels into valid channels (TP preserving, CP preserving)
- $\widetilde{\widetilde{S}}$ may be applied into part of channel (completely CP preserving)

Superchannels

$$
\widetilde{\widetilde{S}}\left(\widetilde{\Lambda_{\text {in }}}\right)=\operatorname{tr}_{A}\left(\widetilde{D} \circ\left(\widetilde{\Lambda_{\text {in }}} \otimes \widetilde{I_{A}}\right) \circ \widetilde{E}\right)
$$

G. Chiribella, G. M. D'Ariano, and P. Perinotti EPL (2008)
K. Życzkowski J. Phys. A 41, 355302-23 (2008)
G. Gutoski and J. Watrous Proceedings of STOC (2007)

Superchannels

- How to represent such mathematical objects?

Superchannels

$$
\widetilde{\widetilde{S}}:\left[\mathcal{L}\left(\mathcal{H}_{2}\right) \rightarrow \mathcal{L}\left(\mathcal{H}_{3}\right)\right] \rightarrow\left[\mathcal{L}\left(\mathcal{H}_{1}\right) \rightarrow \mathcal{L}\left(\mathcal{H}_{4}\right)\right]
$$

- How to represent such mathematical objects?
- Choi-Jamiołkowski isomorphism!!

Superchannels

$$
\widetilde{\widetilde{S}}:\left[\mathcal{L}\left(\mathcal{H}_{2}\right) \rightarrow \mathcal{L}\left(\mathcal{H}_{3}\right)\right] \rightarrow\left[\mathcal{L}\left(\mathcal{H}_{1}\right) \rightarrow \mathcal{L}\left(\mathcal{H}_{4}\right)\right]
$$

- How to represent such mathematical objects?
- Choi-Jamiołkowski isomorphism!!
- Maps $\widetilde{\Lambda}: \mathcal{L}\left(\mathcal{H}_{2}\right) \rightarrow \mathcal{L}\left(\mathcal{H}_{3}\right)$ become matrices $\Lambda \in \mathcal{L}\left(\mathcal{H}_{2} \otimes \mathcal{H}_{3}\right)$.

Superchannels

$$
\widetilde{\widetilde{S}}:\left[\mathcal{L}\left(\mathcal{H}_{2}\right) \rightarrow \mathcal{L}\left(\mathcal{H}_{3}\right)\right] \rightarrow\left[\mathcal{L}\left(\mathcal{H}_{1}\right) \rightarrow \mathcal{L}\left(\mathcal{H}_{4}\right)\right]
$$

- How to represent such mathematical objects?
- Choi-Jamiołkowski isomorphism!!
- Maps $\widetilde{\Lambda}: \mathcal{L}\left(\mathcal{H}_{2}\right) \rightarrow \mathcal{L}\left(\mathcal{H}_{3}\right)$ become matrices $\Lambda \in \mathcal{L}\left(\mathcal{H}_{2} \otimes \mathcal{H}_{3}\right)$.
- Supermaps $\widetilde{\widetilde{S}}$ become maps $\widetilde{S}: \mathcal{L}\left(\mathcal{H}_{2} \otimes \mathcal{H}_{3}\right) \rightarrow \mathcal{L}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{4}\right)$

Superchannels

$$
\widetilde{\widetilde{S}}:\left[\mathcal{L}\left(\mathcal{H}_{2}\right) \rightarrow \mathcal{L}\left(\mathcal{H}_{3}\right)\right] \rightarrow\left[\mathcal{L}\left(\mathcal{H}_{1}\right) \rightarrow \mathcal{L}\left(\mathcal{H}_{4}\right)\right]
$$

- How to represent such mathematical objects?
- Choi-Jamiołkowski isomorphism!!
- Maps $\widetilde{\Lambda}: \mathcal{L}\left(\mathcal{H}_{2}\right) \rightarrow \mathcal{L}\left(\mathcal{H}_{3}\right)$ become matrices $\Lambda \in \mathcal{L}\left(\mathcal{H}_{2} \otimes \mathcal{H}_{3}\right)$.
- Supermaps $\widetilde{\widetilde{S}}$ become maps $\widetilde{S}: \mathcal{L}\left(\mathcal{H}_{2} \otimes \mathcal{H}_{3}\right) \rightarrow \mathcal{L}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{4}\right)$
- Maps \widetilde{S} become matrices $S \in \mathcal{L}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \mathcal{H}_{3} \otimes H_{4}\right)$

Superchannels

$S \in \mathcal{L}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \mathcal{H}_{3} \otimes H_{4}\right)$ is a superchannel iff

$$
\begin{aligned}
S & \geq 0 \\
\operatorname{tr}_{4}(S) & =\operatorname{tr}_{34}(S) \otimes \frac{I_{4}}{d_{4}} \\
\operatorname{tr}_{234}(S) & =\operatorname{tr}_{1234}(S) \otimes \frac{I_{2}}{d_{2}} \\
\operatorname{tr}(S) & =d_{1} d_{3}
\end{aligned}
$$

Superchannels

$$
\begin{aligned}
S & \geq 0 \\
\operatorname{tr}_{4}(S) & =\operatorname{tr}_{34}(S) \otimes \frac{I_{4}}{d_{4}} \\
\operatorname{tr}_{234}(S) & =\operatorname{tr}_{1234}(S) \otimes \frac{I_{2}}{d_{2}} \\
\operatorname{tr}(S) & =d_{1} d_{3}
\end{aligned}
$$

Affine and positive semidefinite constraints \Longrightarrow SDP!!

We want more!

- Is it optimal?

We want more!

- Is it optimal?
- Yes! $d=2 \Longrightarrow p \leq \frac{1}{4}$

We want more!

- Is it optimal?
- Yes! $d=2 \Longrightarrow p \leq \frac{1}{4}$
- Qubits are nice, but what about general qudits?

We want more!

- Is it optimal?
- Yes! $d=2 \Longrightarrow p \leq \frac{1}{4}$
- Qubits are nice, but what about general qudits?
- $d>2 \Longrightarrow p=0$

We want more!

- Is it optimal?
- Yes! $d=2 \Longrightarrow p \leq \frac{1}{4}$
- Qubits are nice, but what about general qudits?
- $d>2 \Longrightarrow p=0$
- How can we increase the success probability?

We want more!

- Is it optimal?
- Yes! $d=2 \Longrightarrow p \leq \frac{1}{4}$
- Qubits are nice, but what about general qudits?
- $d>2 \Longrightarrow p=0$
- How can we increase the success probability?
- More calls/copies

We want more!

- Is it optimal?
- Yes! $d=2 \Longrightarrow p \leq \frac{1}{4}$
- Qubits are nice, but what about general qudits?
- $d>2 \Longrightarrow p=0$
- How can we increase the success probability?
- More calls/copies

(Quantum combs, channel with memory, quantum strategy, quantum superchannels with multiple inputs)

Results

- Parallel $(d=2)$:

$$
p=1-\frac{3}{k+3}
$$

Results

$\sqrt{E_{1}}-\sqrt[U_{d}]{ }-\widetilde{E_{2}}-\sqrt[U_{d}]{\cdots}, \widetilde{D}=p-U_{d}^{-1}-$

- Parallel $(d=2)$:

$$
p=1-\frac{3}{k+3}
$$

- Parallel $(k<d-1): \quad p=0$

Results

$\sqrt{E_{1}}-\sqrt[U_{d}]{ }-\widetilde{E_{2}}-U_{d} \cdots, \widetilde{D}=p-U_{d}^{-1}-$

- Parallel $(d=2): \quad p=1-\frac{3}{k+3}$
- Parallel $(k<d-1): \quad p=0$
- Parallel $(k \geq d-1)$:
$1-\frac{1}{k} \sim 1-\frac{d^{2}-1}{\left\lfloor\frac{k}{d-1}\right\rfloor+d^{2}-1} \leq p \leq 1-\frac{d^{2}-1}{k(d-1)+d^{2}-1} \sim 1-\frac{1}{k}$

Results

$\sqrt{E_{1}}-\sqrt[U_{d}]{ }-\widetilde{E_{2}}-U_{d} \cdots, \widetilde{D}=p-U_{d}^{-1}-$

- Parallel $(d=2): \quad p=1-\frac{3}{k+3}$
- Parallel $(k<d-1): \quad p=0$
- Parallel $(k \geq d-1)$:
$1-\frac{1}{k} \sim 1-\frac{d^{2}-1}{\left\lfloor\frac{k}{d-1}\right\rfloor+d^{2}-1} \leq p \leq 1-\frac{d^{2}-1}{k(d-1)+d^{2}-1} \sim 1-\frac{1}{k}$
- Optimal parallel \Longrightarrow delayed input-state

Results

- Parallel $(d=2)$:

$$
p=1-\frac{3}{k+3}
$$

- Parallel $(k<d-1): \quad p=0$
- Parallel $(k \geq d-1)$:
$1-\frac{1}{k} \sim 1-\frac{d^{2}-1}{\left\lfloor\frac{k}{d-1}\right\rfloor+d^{2}-1} \leq p \leq 1-\frac{d^{2}-1}{k(d-1)+d^{2}-1} \sim 1-\frac{1}{k}$
- Optimal parallel \Longrightarrow delayed input-state
- Sequential $(k<d-1): p=0$

Results

- Parallel $(d=2)$:

$$
p=1-\frac{3}{k+3}
$$

- Parallel $(k<d-1): \quad p=0$
- Parallel $(k \geq d-1)$:
$1-\frac{1}{k} \sim 1-\frac{d^{2}-1}{\left\lfloor\frac{k}{d-1}\right\rfloor+d^{2}-1} \leq p \leq 1-\frac{d^{2}-1}{k(d-1)+d^{2}-1} \sim 1-\frac{1}{k}$
- Optimal parallel \Longrightarrow delayed input-state
- Sequential $(k<d-1): p=0$
- Sequential $(k \geq d-1): p \geq 1-\left(1-\frac{1}{d^{2}}\right)^{\left\lceil\frac{k+2-d}{d}\right\rceil} \sim 1-\frac{1}{e^{k}}$ MTQ, Q. Dong, A. Shimbo, A. Soeda, M. Murao PRA (2019), PRL (2019)

Qubit adaptive circuit

Qubit adaptive circuit

If we fail, we "destroy" the unknown input state... then we cannot re-iterate this protocol...

Qubit adaptive circuit

But well...
if we can use U_{2} once more:
apply $X^{-i} Z^{-j} U_{2}$ to recover the input state!

Success or draw

a)

b)

Success or draw

With k uses, this approach leads to a success probability of

$$
p_{s}=1-\left(1-p_{\text {draw }}\right)^{k}
$$

Success or draw

Theorem
Success or draw is always possible!

Q. Dong, MTQ, A. Soeda, M. Murao

PRL (2021)

Arbitrary functions $f\left(U_{d}\right)$

$$
\widetilde{E_{1}}-\widetilde{U_{d}}-\widetilde{E_{2}}-U_{d} \cdots \widetilde{D}=p-f\left(U_{d}\right)
$$

Deterministic protocols?

- Deterministic non-exact is also interesting!

Deterministic protocols?

- Deterministic non-exact is also interesting!

- Average channel fidelity (over the Haar measure)

Deterministic protocols?

- Deterministic non-exact is also interesting!

- Average channel fidelity (over the Haar measure)
- Maximal white noise visibility

Deterministic protocols?

- Deterministic non-exact is also interesting!

- Average channel fidelity (over the Haar measure)
- Maximal white noise visibility
- Parallel inversion = Parallel transposition $=$ Unitary estimation MTQ, D. Ebler, Quantum 2022

Solving the homomorphic case

A. Bisio, G.M. D'Ariano, P. Perinotti, M. Sedlak Physics Letters A (2014)

Solving the homomorphic case

A. Bisio, G.M. D'Ariano, P. Perinotti, M. Sedlak Physics Letters A (2014)

- e.g., $(U V)^{*}=U^{*} V^{*}$, and cloning

Solving the homomorphic case

- When $f: \mathrm{SU}(d) \rightarrow \mathrm{SU}(d)$ and $f(U V)=f(U) f(V)$, we know "everything".

Solving the homomorphic case

- When $f: \mathrm{SU}(d) \rightarrow \mathrm{SU}(d)$ and $f(U V)=f(U) f(V)$, we know "everything".
- Step 1: There are only three homomorphisms $f: \mathrm{SU}(d) \rightarrow \mathrm{SU}(d)$ $f(U)=U, f(U)=I, f(U)=\bar{U}$.

Solving the homomorphic case

- When $f: \mathrm{SU}(d) \rightarrow \mathrm{SU}(d)$ and $f(U V)=f(U) f(V)$, we know "everything".
- Step 1: There are only three homomorphisms $f: \mathrm{SU}(d) \rightarrow \mathrm{SU}(d)$ $f(U)=U, f(U)=I, f(U)=\bar{U}$.
- Step 2: construct a circuit with $F=\frac{k+1}{d(d-1)}$

Solving the homomorphic case

- When $f: \mathrm{SU}(d) \rightarrow \mathrm{SU}(d)$ and $f(U V)=f(U) f(V)$, we know "everything".
- Step 1: There are only three homomorphisms $f: \mathrm{SU}(d) \rightarrow \mathrm{SU}(d)$ $f(U)=U, f(U)=I, f(U)=\bar{U}$.
- Step 2: construct a circuit with $F=\frac{k+1}{d(d-1)}$

- Step 3: use SDP duality and group theoretic results on Young-Tableau to prove $F \leq \frac{k+1}{d(d-1)}$
IEEE Transactions on Information Theory
D. Ebler, M. Horodecki, M. Marciniak, T. Młynik, MTQ, M. Studziński

Solving the homomorphic case

- When $f: \mathrm{SU}(d) \rightarrow \mathrm{SU}(d)$ and $f(U V)=f(U) f(V)$, we know "everything".
- Step 1: There are only three homomorphisms $f: \mathrm{SU}(d) \rightarrow \mathrm{SU}(d)$ $f(U)=U, f(U)=I, f(U)=\bar{U}$.
- Step 2: construct a circuit with $F=\frac{k+1}{d(d-1)}$

- Step 3: use SDP duality and group theoretic results on Young-Tableau to prove $F \leq \frac{k+1}{d(d-1)}$
IEEE Transactions on Information Theory
D. Ebler, M. Horodecki, M. Marciniak, T. Młynik, MTQ, M. Studziński
- Step 4: prove that if $k<d-1, p=0$ PRA
MTQ, Q. Dong, A. Shimbo, A. Soeda, M. Murao

Progress on the anti-homomorphic case

- $f(U V)=f(V) f(U)$

Progress on the anti-homomorphic case

- $f(U V)=f(V) f(U)$
- There are only two homomorphisms $f: \mathrm{SU}(d) \rightarrow \mathrm{SU}(d)$ $f(U)=U^{T}$ and $f(U)=U^{-1}$.

Progress on the anti-homomorphic case

- $f(U V)=f(V) f(U)$
- There are only two homomorphisms $f: \mathrm{SU}(d) \rightarrow \mathrm{SU}(d)$ $f(U)=U^{T}$ and $f(U)=U^{-1}$.
- Sequential circuits exponentially outperform parallel ones

Progress on the anti-homomorphic case

- $f(U V)=f(V) f(U)$
- There are only two homomorphisms $f: \mathrm{SU}(d) \rightarrow \mathrm{SU}(d)$ $f(U)=U^{T}$ and $f(U)=U^{-1}$.
- Sequential circuits exponentially outperform parallel ones
- But, there are still various open questions...

Progress on the anti-homomorphic case

- $f(U V)=f(V) f(U)$
- There are only two homomorphisms $f: \mathrm{SU}(d) \rightarrow \mathrm{SU}(d)$ $f(U)=U^{T}$ and $f(U)=U^{-1}$.
- Sequential circuits exponentially outperform parallel ones
- But, there are still various open questions...
- For instance: when $d=2$ we have

PRL, S. Yoshida, A. Soeda, M. Murao

More general superchannels?

Can we go beyond sequential quantum circuits?

Quantum Switch

Quantum computations without definite causal structure
G. Chiribella, G. M. D'Ariano, P. Perinotti, B. Valiron PRA 2013

More general superchannels?

$$
\widetilde{\widetilde{S}}\left(\widetilde{\Lambda_{1}} \otimes \widetilde{\Lambda_{2}}\right)=\widetilde{\Lambda_{\text {out }}}
$$

More general superchannels?

$$
\widetilde{\widetilde{S}}\left(\widetilde{\Lambda_{1}} \otimes \widetilde{\Lambda_{2}}\right)=\widetilde{\Lambda_{\text {out }}}
$$

Process Matrices! (May have an indefinite causal order)
G. Chiribella, G. M. D'Ariano, P. Perinotti, and B. Valiron, PRA (2013)
O. Oreshkov, F. Costa, and Č. Brukner, Nature Communications (2012)

Process matrices

- Process matrices with indefinite causal order are not (explicitly) forbidden by quantum mechanics

Process matrices

- Process matrices with indefinite causal order are not (explicitly) forbidden by quantum mechanics
- Upper bounds and ansatz

Process matrices

- Process matrices with indefinite causal order are not (explicitly) forbidden by quantum mechanics
- Upper bounds and ansatz
- Sometimes useless

Process matrices

- Process matrices with indefinite causal order are not (explicitly) forbidden by quantum mechanics
- Upper bounds and ansatz
- Sometimes useless
- Sometimes useful (but with limited power)

Summary of results

Deterministic unitary inversion: $U^{\otimes k} \stackrel{\approx}{\leftrightarrows} U^{-1}$

	Parallel	Sequential	General		
$k=1$	$F=\frac{2}{d^{2}}$	$F=\frac{2}{d^{2}}$	$F=\frac{2}{d^{2}}$		
$d=2$	$F=1-\sin ^{2}\left(\frac{\pi}{k+3}\right)$	$?$	$?$		
(d, k)	$\left\\|M_{\text {est }}\right\\|$	$?$	$?$		
$k \rightarrow \infty$	$F \approx 1-\frac{1}{k^{2}}$	$1-\frac{1}{e^{k}} \leq F \leq ?$	$?$		
Estimation	$F_{\text {par }}=F_{\text {est }}$	N/A	N/A		
PBT	$?$	N/A	N/A		
$k \leq d-1$	$F=\frac{k+1}{d^{2}}$	$F=\frac{k+1}{d^{2}}$	$F=\frac{k+1}{d^{2}}$		
$d=2, k=4$	$F=1-\sin ^{2}\left(\frac{\pi}{7}\right)$	$F=1$	$F=1$		
$d=2, k=2$	$F=1-\sin ^{2}\left(\frac{\pi}{5}\right)$	$F=\frac{3}{4}$	$F \approx 0.8249$		
$d=3, k=2$	$F=\frac{1}{3}$	$F=\frac{1}{3}$	$F=\frac{1}{3}$		

Summary of results

Deterministic unitary inversion: $U^{\otimes k} \stackrel{\approx}{\leftrightarrows} U^{-1}$
Deterministic unitary transposition: $U^{\otimes k} \stackrel{\approx}{\rightleftarrows} U^{T}$

	Parallel	Sequential	General		Parallel	Sequential	General		
$k=1$	$F=\frac{2}{d^{2}}$	$F=\frac{2}{d^{2}}$	$F=\frac{2}{d^{2}}$	$k=1$	$F=\frac{2}{d^{2}}$	$F=\frac{2}{d^{2}}$	$F=\frac{2}{d^{2}}$		
$d=2$	$F=1-\sin ^{2}\left(\frac{\pi}{k+3}\right)$?	?	$d=2$	$F=1-\sin ^{2}\left(\frac{\pi}{k+3}\right)$?	?		
(d, k)	$\left\\|M_{\text {est }}\right\\|$?	?	(d, k)	$\left\|M_{\text {est }}\right\| \mid$?	?		
$k \rightarrow \infty$	$F \approx 1-\frac{1}{k^{2}}$	$1-\frac{1}{e^{k}} \leq F \leq$?	?	$k \rightarrow \infty$	$F \approx 1-\frac{1}{k^{2}}$	$1-\frac{1}{e^{k}} \leq F \leq$?	?		
Estimation	$F_{\text {par }}=F_{\text {est }}$	N/A	N/A	Estimation	$F_{\text {par }}=F_{\text {est }}$	N/A	N/A		
PBT	?	N/A	N/A	PBT	?	N/A	N/A		
$k \leq d-1$	$F=\frac{k+1}{d^{2}}$	$F=\frac{k+1}{d^{2}}$	$F=\frac{k+1}{d^{2}}$	$k \leq d-1$	$F=\frac{k+1}{d^{2}}$?	?		
$d=2, k=4$	$F=1-\sin ^{2}\left(\frac{\pi}{7}\right)$	$F=1$	$F=1$	$d=2, k=4$	$F=1-\sin ^{2}\left(\frac{\pi}{7}\right)$	$F=1$	$F=1$		
$d=2, k=2$	$F=1-\sin ^{2}\left(\frac{\pi}{5}\right)$	$F=\frac{3}{4}$	$F \approx 0.8249$	$d=2, k=2$	$F=1-\sin ^{2}\left(\frac{\pi}{5}\right)$	$F=\frac{3}{4}$	$F \approx 0.8249$		
$d=3, k=2$	$F=\frac{1}{3}$	$F=\frac{1}{3}$	$F=\frac{1}{3}$	$d=3, k=2$	$F=\frac{1}{3}$	$F \approx 0,4074$	$F=0.4349$		

Summary of results

Deterministic unitary inversion: $U^{\otimes k} \stackrel{\approx}{\approx} U^{-1}$

	Parallel	Sequential	General		
$k=1$	$F=\frac{2}{d^{2}}$	$F=\frac{2}{d^{2}}$	$F=\frac{2}{d^{2}}$		
$d=2$	$F=1-\sin ^{2}\left(\frac{\pi}{k+3}\right)$	$?$	$?$		
(d, k)	$\left\\|M_{\text {est }}\right\\|$	$?$	$?$		
$k \rightarrow \infty$	$F \approx 1-\frac{1}{k^{2}}$	$1-\frac{1}{e^{k}} \leq F \leq ?$	$?$		
Estimation	$F_{\text {par }}=F_{\text {est }}$	N/A	N/A		
PBT	$?$	N/A	N/A		
$k \leq d-1$	$F=\frac{k+1}{d^{2}}$	$F=\frac{k+1}{d^{2}}$	$F=\frac{k+1}{d^{2}}$		
$d=2, k=4$	$F=1-\sin ^{2}\left(\frac{\pi}{7}\right)$	$F=1$	$F=1$		
$d=2, k=2$	$F=1-\sin ^{2}\left(\frac{\pi}{5}\right)$	$F=\frac{3}{4}$	$F \approx 0.8249$		
$d=3, k=2$	$F=\frac{1}{3}$	$F=\frac{1}{3}$	$F=\frac{1}{3}$		

Deterministic unitary transposition: $U^{\otimes k} \stackrel{\approx}{\rightleftarrows} U^{T}$

	Parallel	Sequential	General		
$k=1$	$F=\frac{2}{d^{2}}$	$F=\frac{2}{d^{2}}$	$F=\frac{2}{d^{2}}$		
$d=2$	$F=1-\sin ^{2}\left(\frac{\pi}{k+3}\right)$	$?$	$?$		
(d, k)	$\left\\|M_{\text {est }}\right\\|$	$?$	$?$		
$k \rightarrow \infty$	$F \approx 1-\frac{1}{k^{2}}$	$1-\frac{1}{e^{k}} \leq F \leq ?$	$?$		
Estimation	$F_{\text {par }}=F_{\text {est }}$	N/A	N/A		
PBT	$? ?$	N/A	N/A		
$k \leq d-1$	$F=\frac{k+1}{d^{2}}$	$?$	$?$		
$d=2, k=4$	$F=1-\sin ^{2}\left(\frac{\pi}{7}\right)$	$F=1$	$F=1$		
$d=2, k=2$	$F=1-\sin ^{2}\left(\frac{\pi}{5}\right)$	$F=\frac{3}{4}$	$F \approx 0.8249$		
$d=3, k=2$	$F=\frac{1}{3}$	$F \approx 0,4074$	$F=0.4349$		

Probabilistic unitary transposition: $U^{\otimes k} \mapsto p U^{T}$

	Parallel	Sequential	General
$k=1$	$p=\frac{1}{d^{2}}$	$p=\frac{1}{d^{2}}$	$p=\frac{1}{d^{2}}$
$d=2$	$p=1-\frac{3}{k+3}$	$?$	$?$
(d, k)	$p=1-\frac{d^{2}-1}{k+d^{2}-1}$	$?$	$?$
$k \rightarrow \infty$	$p \approx 1-\frac{1}{k}$	$1-\frac{1}{e^{k}} \leq p \leq ?$	$?$
Store-retrieve	$p_{\text {par }}=p_{\mathrm{s}-\mathrm{r}}$	N / A	N / A
PBT	$p_{\text {par }}=p_{\mathrm{pbt}}$	N / A	N / A
$k \leq d-1$	$p=1-\frac{d^{2}-1}{k+d^{2}-1}$	$?$	$?$
$d=2, k=4$	$p=\frac{4}{7}$	$p=1$	$p=1$
$d=2, k=2$	$p=\frac{2}{5}$	$p=\frac{3}{7}$	$p \approx 4 / 9$
$d=3, k=2$	$p=\frac{2}{10}$	$p \approx \frac{2}{9}$	$p \approx \frac{2}{8}$

Measuring quantum operations

How can one perform a measurement on a quantum operation?

Measuring quantum operations

Measuring quantum operations

(c) GENERAL
(a) PARALLEL

(b) SEQUENTIAL

J. Bavaresco, M. Murao, MTQ PRL (2021)
J. Bavaresco, M. Murao, MTQ J. Math. Phys. (2022)

Quantum channel discrimination

- Two unitaries \Longrightarrow parallel is optimal
G. Chiribella, G. M. D'Ariano, P. Perinotti PRL (2008)

Quantum channel discrimination

- Two unitaries \Longrightarrow parallel is optimal
G. Chiribella, G. M. D'Ariano, P. Perinotti PRL (2008)
- Uniform unitaries + a group structure \Longrightarrow parallel is optimal
G. Chiribella, G. M. D'Ariano, P. Perinotti, PRL (2008)
J. Bavaresco, M. Murao, MTQ, J. Math. Phys. (2022)

Quantum channel discrimination

- Two unitaries \Longrightarrow parallel is optimal
G. Chiribella, G. M. D'Ariano, P. Perinotti PRL (2008)
- Uniform unitaries + a group structure \Longrightarrow parallel is optimal
G. Chiribella, G. M. D'Ariano, P. Perinotti, PRL (2008)
J. Bavaresco, M. Murao, MTQ, J. Math. Phys. (2022)
- Non-symmetric scenarios? Non-unitary quantum channels?

Quantum channel discrimination

- Two unitaries \Longrightarrow parallel is optimal
G. Chiribella, G. M. D'Ariano, P. Perinotti PRL (2008)
- Uniform unitaries + a group structure \Longrightarrow parallel is optimal
G. Chiribella, G. M. D'Ariano, P. Perinotti, PRL (2008)
J. Bavaresco, M. Murao, MTQ, J. Math. Phys. (2022)
- Non-symmetric scenarios? Non-unitary quantum channels?
- Almost always, we have a strict hierarchy!
J. Bavaresco, M. Murao, MTQ PRL (2021)
J. Bavaresco, M. Murao, MTQ J. Math. Phys. (2022)

Quantum channel discrimination

- Two unitaries \Longrightarrow parallel is optimal
G. Chiribella, G. M. D'Ariano, P. Perinotti PRL (2008)
- Uniform unitaries + a group structure \Longrightarrow parallel is optimal
G. Chiribella, G. M. D'Ariano, P. Perinotti, PRL (2008)
J. Bavaresco, M. Murao, MTQ, J. Math. Phys. (2022)
- Non-symmetric scenarios? Non-unitary quantum channels?
- Almost always, we have a strict hierarchy!
J. Bavaresco, M. Murao, MTQ PRL (2021)
J. Bavaresco, M. Murao, MTQ J. Math. Phys. (2022)
- SDP duality theory + indefinite causal order methods \Longrightarrow "universal upper bound" on unitary channel discrimination

Unitary channel discrimination

- For any ensemble,

$$
\left\{p_{i}, U_{i}^{\otimes k}\right\}_{i=1}^{N}, \quad U_{i} \in \mathrm{SU}(d)
$$

Unitary channel discrimination

- For any ensemble,

$$
\left\{p_{i}, U_{i}^{\otimes k}\right\}_{i=1}^{N}, \quad U_{i} \in \mathrm{SU}(d)
$$

- The maximal probability of discrimination respects

$$
p_{\text {succ }} \leq \frac{1}{N} \frac{\left(k+d^{2}-1\right)!}{k!\left(d^{2}-1\right)!}
$$

Unitary channel discrimination

- For any ensemble,

$$
\left\{p_{i}, U_{i}^{\otimes k}\right\}_{i=1}^{N}, \quad U_{i} \in \mathrm{SU}(d)
$$

- The maximal probability of discrimination respects

$$
p_{\text {succ }} \leq \frac{1}{N} \frac{\left(k+d^{2}-1\right)!}{k!\left(d^{2}-1\right)!}
$$

- When $\left\{U_{i}\right\}_{i=1}^{N}$ is a group k-design and $p_{i}=\frac{1}{N}$, this bound is saturated (by parallel strategies).

Final remarks

- Superchannels are nice

Final remarks

- Superchannels are nice
- Semidefinite Programming, group representation

Final remarks

- Superchannels are nice
- Semidefinite Programming, group representation
- Transforming between quantum operations

Final remarks

- Superchannels are nice
- Semidefinite Programming, group representation
- Transforming between quantum operations
- Measuring between quantum operations

Final remarks

- Superchannels are nice
- Semidefinite Programming, group representation
- Transforming between quantum operations
- Measuring between quantum operations
- New methods and new concepts

Final remarks

- Superchannels are nice
- Semidefinite Programming, group representation
- Transforming between quantum operations
- Measuring between quantum operations
- New methods and new concepts
- Power and limitation of indefinite causality

Final remarks

- Superchannels are nice
- Semidefinite Programming, group representation
- Transforming between quantum operations
- Measuring between quantum operations
- New methods and new concepts
- Power and limitation of indefinite causality
- Can we have deterministic exact unitary inversion with finite sequential circuits?

Final remarks

- Superchannels are nice
- Semidefinite Programming, group representation
- Transforming between quantum operations
- Measuring between quantum operations
- New methods and new concepts
- Power and limitation of indefinite causality
- Can we have deterministic exact unitary inversion with finite sequential circuits?
- Asymptotic and practical advantages of indefinite causality?

Thank you!

Thank you!

