Measurement incompatibility and Bell nonlocality: from 1985 to 2022

Marco Túlio Quintino
IQOQI Vienna/University of Vienna

mtcq.github.io
universität

= Federal Ministry Education, Science and Research

Measurement incompatibility

$\Delta x \Delta p \geq \hbar / 2$

Quantum entanglement
$\rho_{A B} \neq \int \pi(\lambda) \rho_{A}^{\lambda} \otimes \rho_{B}^{\lambda} \mathrm{d} \lambda$

State+Measurement

$$
p\left(i \mid \rho,\left\{M_{i}\right\}_{i}\right)=\operatorname{tr}\left(\rho M_{i}\right)
$$

State+Measurement

$$
p\left(i \mid \rho,\left\{M_{i}\right\}_{i}\right)=\operatorname{tr}\left(\rho M_{i}\right), \quad|\langle i \mid \psi\rangle|^{2}
$$

EPR steering

$$
\sigma_{a \mid x} \neq \sum_{\lambda} \pi(\lambda) p_{A}(a \mid x, \lambda) \rho_{\lambda}
$$

Bell nonlocality

$$
p(a b \mid x y) \neq \sum_{\lambda} \pi(\lambda) p_{A}(a \mid x, \lambda) p_{B}(b \mid y, \lambda)
$$

Relationship between all that

$$
\|C H S H\|=\sqrt{4 l+\left\|\left[A_{1}, A_{2}\right]\right\|\left\|\left[B_{1}, B_{2}\right]\right\|}
$$

Bell Nonlocality

The Correlation/Anticorrelation Game

The Correlation/Anticorrelation Game

The Correlation/Anticorrelation Game

The Correlation/Anticorrelation Game

The Correlation/Anticorrelation Game

The Correlation/Anticorrelation Game

The Correlation/Anticorrelation Game

The Correlation/Anticorrelation Game

Winning Conditions

Best Strategy

Can Alice and Bob always win?

Best Strategy

Best (classical) strategy wins with probability $\frac{3}{4}$

Quantum Strategy

Quantum Strategy

$$
p_{q}=\frac{2+\sqrt{2}}{4} \approx 0.8535
$$

Bell nonlocality

$p_{\text {win }}=\sum_{a b x y} \pi(x, y) V(a b \mid x y) p(a b \mid x y)$

Bell nonlocality

$$
p(a b \mid x y) \neq \sum_{\lambda} \pi(\lambda) p_{A}(a \mid x, \lambda) p_{B}(b \mid y, \lambda)
$$

Quantum measurement

Quantum measurement

Quantum measurement

Quantum measurement

$$
\begin{gathered}
p(a \mid \rho, A)=\operatorname{tr}\left(\rho A_{a}\right) \\
A=\left\{A_{a}\right\}, \quad A_{a} \geq 0, \quad \sum_{a} A_{a}=I
\end{gathered}
$$

$$
\begin{gathered}
\rho \\
\downarrow \\
\boldsymbol{A} \\
\downarrow \\
\left(\rho_{a}, a\right)
\end{gathered}
$$

Quantum measurement

$$
p(a \mid \rho, A)=\operatorname{tr}\left(\rho A_{a}\right), \quad \rho_{a}=A_{a} \text { (if projective) }
$$

Quantum measurement

$$
p(a \mid \rho, A)=\operatorname{tr}\left(\rho A_{a}\right), \quad \rho_{a}=\frac{\sqrt{A_{a}} \rho \sqrt{A_{a}}}{\rho A_{a}} \text { (Lüders) }
$$

ρ
 A
 $$
\left(\rho_{a}^{\downarrow}, a\right)
$$

Measurement compatibility

Measurement compatibility

Incompatible measurements are in the core of quantum theory

Measurement compatibility

When the measurements commute:

Measurement compatibility

When the measurements commute:

$$
\left[A_{a}, B_{b}\right]:=A_{a} B_{b}-B_{b} A_{a}=0
$$

Measurement compatibility

Commutation \Longrightarrow measurement compatibility

Measurement compatibility

Joint measurability

Bell NL and no JM

Bell NL

No JM

Bell NL and no JM

Bell NL

Bell NL

Correlator:

$$
\left\langle A_{x} B_{y}\right\rangle=p(a=b \mid x y)-p(a \neq b \mid x y)
$$

Winning Conditions

Bell NL

Correlator:

$$
\langle C H S H\rangle:=\left\langle A_{1} B_{1}\right\rangle+\left\langle A_{1} B_{2}\right\rangle+\left\langle A_{2} B_{1}\right\rangle-\left\langle A_{2} B_{2}\right\rangle
$$

Bell NL

The CHSH inequality:

$$
\langle C H S H\rangle:=\left\langle A_{1} B_{1}\right\rangle+\left\langle A_{1} B_{2}\right\rangle+\left\langle A_{2} B_{1}\right\rangle-\left\langle A_{2} B_{2}\right\rangle \stackrel{\text { local }}{\leq} 2
$$

Bell NL

Quantum Observable:

$$
\begin{aligned}
& A_{x}:=A_{g \mid x}-A_{p \mid x} \\
& B_{x}:=B_{\left.g\right|_{x}}-B_{p \mid x}
\end{aligned}
$$

$$
\begin{aligned}
\left\langle A_{x} B_{y}\right\rangle_{Q}= & \operatorname{tr}\left(\rho A_{x} \otimes B_{y}\right) \\
= & \operatorname{tr}\left(\rho A_{g \mid x} \otimes B_{g \mid y}\right)+\operatorname{tr}\left(\rho A_{p \mid x} \otimes B_{p \mid y}\right) \\
& \quad-\operatorname{tr}\left(\rho A_{g \mid x} \otimes B_{p \mid y}\right)-\operatorname{tr}\left(\rho A_{g \mid x} \otimes B_{g \mid y}\right)
\end{aligned}
$$

Bell NL

Quantum Observable:

$$
\begin{aligned}
& A_{x}:=A_{g \mid x}-A_{p \mid x} \\
& B_{x}:=B_{\left.g\right|_{x}}-B_{p \mid x}
\end{aligned}
$$

A_{x} and B_{y} are matrices with eigenvalues ± 1

$$
\left\langle A_{x} B_{y}\right\rangle_{Q}=\operatorname{tr}\left(\rho A_{x} \otimes B_{y}\right)
$$

Bell NL

The CHSH operator:

CHSH $:=A_{1} \otimes B_{1}+A_{1} \otimes B_{2}+A_{2} \otimes B_{1}-A_{2} \otimes B_{2}$

Bell NL

The CHSH operator:

$$
C H S H:=A_{1} \otimes B_{1}+A_{1} \otimes B_{2}+A_{2} \otimes B_{1}-A_{2} \otimes B_{2}
$$

Maximal quantum score is given by the largest eigenvalue of CHSH

Tsirelson Bound

Letters in Mathematical Physics (1980) QUANTUM GENERALIZATIONS CF BELL'S INEQUALITY
 B.S. CIREL'SON
 Leningrad, U.S.S.R.

ABSTRACT. Even though quantum correlations violate Bell's inequality, they satisfy weaker inequalities of a similar type. Some particular inequalities of this kind are proved here. The m

$$
\begin{gathered}
A_{1} B_{1}+A_{1} B_{2}+A_{2} B_{1}-A_{2} B_{2}=\frac{1}{\sqrt{2}}\left(A_{1}^{2}+A_{2}^{2}+B_{1}^{2}+B_{2}^{2}\right)- \\
\quad-\frac{\sqrt{2}-1}{8}\left((\sqrt{2}+1)\left(A_{1}-B_{1}\right)+A_{2}-B_{2}\right)^{2}- \\
-\frac{\sqrt{2}-1}{8}\left((\sqrt{2}+1)\left(A_{1}-B_{2}\right)-A_{2}-B_{1}\right)^{2}- \\
\quad-\frac{\sqrt{2}-1}{8}\left((\sqrt{2}+1)\left(A_{2}-B_{1}\right)+A_{1}+B_{2}\right)^{2}- \\
\quad-\frac{\sqrt{2}-1}{8}\left((\sqrt{2}+1)\left(A_{2}+B_{2}\right)-A_{1}-B_{1}\right)^{2} \\
\quad \leq \frac{1}{\sqrt{2}}\left(A_{1}^{2}+A_{2}^{2}+B_{1}^{2}+B_{2}^{2}\right) \leq 2 \sqrt{2} \cdot 11
\end{gathered}
$$

Tsirelson Bound

QUANTUM GENERALIZATIONS CF BELL'S INEQUALITY

> B.S. CIREL'SON
> Leningrad, U.S.S.R.

ABSTRACT. Even though quantum correlations violate Bell's inequality, they satisfy weaker inequalities of a similar type. Some particular inequalities of this kind are proved here. The m

$$
\begin{gathered}
A_{1} B_{1}+A_{1} B_{2}+A_{2} B_{1}-A_{2} B_{2}=\frac{1}{\sqrt{2}}\left(A_{1}^{2}+A_{2}^{2}+B_{1}^{2}+B_{2}^{2}\right)- \\
\quad-\frac{\sqrt{2}-1}{8}\left((\sqrt{2}+1)\left(A_{1}-B_{1}\right)+A_{2}-B_{2}\right)^{2}- \\
\quad-\frac{\sqrt{2}-1}{8}\left((\sqrt{2}+1)\left(A_{1}-B_{2}\right)-A_{2}-B_{1}\right)^{2}- \\
\quad-\frac{\sqrt{2}-1}{8}\left((\sqrt{2}+1)\left(A_{2}-B_{1}\right)+A_{1}+B_{2}\right)^{2}- \\
\quad-\frac{\sqrt{2}-1}{8}\left((\sqrt{2}+1)\left(A_{2}+B_{2}\right)-A_{1}-B_{1}\right)^{2} \\
\quad \leq \frac{1}{\sqrt{2}}\left(A_{1}^{2}+A_{2}^{2}+B_{1}^{2}+B_{2}^{2}\right) \leq 2 \sqrt{2} \cdot 11
\end{gathered}
$$

$\left\|A_{1} \otimes B_{1}+A_{1} \otimes B_{2}+A_{2} \otimes B_{1}-A_{2} \otimes B_{2}\right\| \leq 2 \sqrt{2}$

Tsirelson Bound 2.0

SYMPOSIUM ON THE FOUNDATIONS OF MODERN PHYSICS, pp. 441-460 edited by P. Lahti \& P. Mittelstaedt © 1985 by World Scientific Publishing Co.

QUANTUM AND QUASI-CLASSICAL ANALOGS OF BELL INEQUALITIES*

> L. A.Khalfin, B.S.Tsirelson

Steklov Mathematical Institute, Leningrad D-11, USSR Both (1) and (2) can be treated as a consequences of the following inequality:
$\left(A_{1} B_{1}+A_{1} B_{2}+A_{2} B_{1}-A_{2} B_{2}\right)^{2} \leqslant 4 \cdot 1-\left[A_{1}, A_{2}\right] \cdot\left[B_{1}, B_{2}\right]$,
holding under the same assumptions as (2). From (3) it follows immediately
$\left\|A_{1} B_{1}+A_{1} B_{2}+A_{2} B_{1}-A_{2} B_{2}\right\| \leqslant \sqrt{4+I\left[A_{1}, A_{2}\right] \| \cdot\left[\left[B_{1}, B_{2}\right] \|\right.}$.

Tsirelson Bound 2.0

SYMPOSIUM ON THE FOUNDATIONS OF MODERN PHYSICS, pp. 441-460 edited by P. Lahti \& P. Mittelstaedt
© 1985 by World Scientific Publishing Co.
QUANTUM AND QUASI-CLASSICAL ANALOGS OF BELL INEQUALITIES*

> L. A.Khalfin, B.S.Tsirelson

Steklov Mathematical Institute, Leningrad D-11, USSR
Both (1) and (2) can be treated as a consequences of the following inequality:
$\left(A_{1} B_{1}+A_{1} B_{2}+A_{2} B_{1}-A_{2} B_{2}\right)^{2} \leqslant 4 \cdot 1-\left[A_{1}, A_{2}\right] \cdot\left[B_{1}, B_{2}\right]$,
holding under the same assumptions as (2). From (3) it follows immediately
$\left\|A_{1} B_{1}+A_{1} B_{2}+A_{2} B_{1}-A_{2} B_{2}\right\| \leqslant \sqrt{4+\left\|\left[A_{1}, A_{2}\right]\right\| \cdot\left\|\left[B_{1}, B_{2}\right]\right\|}$.

$$
\|C H S H\|=\sqrt{4 I+\left\|\left[A_{1}, A_{2}\right]\right\|\left\|\left[B_{1}, B_{2}\right]\right\|}
$$

Tsirelson Bound

$$
\|C H S H\|=\sqrt{4 I+\left\|\left[A_{1}, A_{2}\right]\right\|\left\|\left[B_{1}, B_{2}\right]\right\|}
$$

Bell NL and JM

Bell NL and JM

Beyond projective measurements? Beyond CHSH?

Quantum measurement

Naimark dilation:
POVM \Longleftrightarrow global unitary + measurement

Joint Measurability

$\left\{A_{a}\right\}$ and $\left\{B_{b}\right\}$ are JM if there exists a measurement $\left\{M_{a b}\right\}$ s. t.:

Joint Measurability

$\left\{A_{a}\right\}$ and $\left\{B_{b}\right\}$ are JM if there exists a measurement $\left\{M_{a b}\right\}$ s. t.:

$$
\begin{aligned}
& \sum_{a} M_{a b}=B_{b} \\
& \sum_{b} M_{a b}=A_{a}
\end{aligned}
$$

$$
M_{a b} \geq 0, \quad \sum_{a b} M_{a b}=l
$$

Pauli Measurements

$$
\sigma_{Z}:\{|0\rangle\langle 0|,|1\rangle\langle 1|\} \quad \sigma_{X}:\{|+\rangle\langle+|,|-\rangle\langle-|\}
$$

Noise Pauli Measurements

$$
\sigma_{Z, \eta}:\left\{\eta|0\rangle\langle 0|+(1-\eta) \frac{l}{2} ; \quad \eta|1\rangle\langle 1|+(1-\eta) \frac{l}{2}\right\}
$$

Noise Pauli Measurements

$$
\begin{array}{cc}
\sigma_{Z, \eta}:\left\{\eta|0\rangle\langle 0|+(1-\eta) \frac{l}{2} ;\right. & \left.\eta|1\rangle\langle 1|+(1-\eta) \frac{l}{2}\right\} \\
\sigma_{X, \eta}:\left\{\eta|+\rangle\langle+|+(1-\eta) \frac{l}{2} ;\right. & \left.\eta|-\rangle\langle-|+(1-\eta) \frac{l}{2}\right\}
\end{array}
$$

Noise Pauli Measurements

$$
\begin{gathered}
\sigma_{Z, \eta}:\left\{\eta|0\rangle\langle 0|+(1-\eta) \frac{l}{2} ; \quad \eta|1\rangle\langle 1|+(1-\eta) \frac{l}{2}\right\} \\
\sigma_{X, \eta}:\left\{\eta|+\rangle\langle+|+(1-\eta) \frac{l}{2} ; \quad \eta|-\rangle\langle-|+(1-\eta) \frac{l}{2}\right\} \\
\eta \leq \frac{1}{\sqrt{2}} \Longrightarrow \text { Joint Measurability }
\end{gathered}
$$

Hollow Triangle

$$
\begin{gathered}
\sigma_{Z, \eta}:\left\{\eta|0\rangle\langle 0|+(1-\eta) \frac{l}{2} ; \quad \eta|1\rangle\langle 1|+(1-\eta) \frac{l}{2}\right\} \\
\sigma_{X, \eta}:\left\{\eta|+\rangle\langle+|+(1-\eta) \frac{l}{2} ; \quad \eta|-\rangle\langle-|+(1-\eta) \frac{l}{2}\right\} \\
\sigma_{Y, \eta}:\left\{\eta|Y+\rangle\langle Y+|+(1-\eta) \frac{l}{2} ; \quad \eta|Y-\rangle\langle Y-|+(1-\eta) \frac{l}{2}\right\} \\
\eta \leq \frac{1}{\sqrt{2}} \Longrightarrow \text { Pairwise Measurability }
\end{gathered}
$$

Hollow Triangle

$$
\begin{gathered}
\sigma_{Z, \eta}:\left\{\eta|0\rangle\langle 0|+(1-\eta) \frac{l}{2} ; \quad \eta|1\rangle\langle 1|+(1-\eta) \frac{l}{2}\right\} \\
\sigma_{X, \eta}:\left\{\eta|+\rangle\langle+|+(1-\eta) \frac{l}{2} ; \quad \eta|-\rangle\langle-|+(1-\eta) \frac{l}{2}\right\} \\
\sigma_{Y, \eta}:\left\{\eta|Y+\rangle\langle Y+|+(1-\eta) \frac{l}{2} ; \quad \eta|Y-\rangle\langle Y-|+(1-\eta) \frac{l}{2}\right\} \\
\eta \leq \frac{1}{\sqrt{2}} \Longrightarrow \text { Pairwise Measurability } \\
\eta \leq \frac{1}{\sqrt{3}} \Longrightarrow \text { Triplewise Measurability }
\end{gathered}
$$

Hollow Triangle

T. Heinosaari, D. Reitzner, P. Stano: Foundations of Physics (2008)

Bell NL and JM

Bell NL

Bell NL and JM

M. Wolf, D. Perez-Garcia, C. Fernandez, PRL (2009)

Bell NL and JM

$\left\{A_{a \mid x}\right\}_{a, x=1}^{2}$ not $\mathrm{JM} \Longrightarrow \exists \rho_{A B}$ and $\left\{B_{b \mid y}\right\}$ such that: $p(a b \mid x y)=\operatorname{tr}\left(\rho_{A B} A_{a \mid x} \otimes B_{b \mid y}\right)$ is Bell NL

Bell NL

M. Wolf, D. Perez-Garcia, C. Fernandez, PRL (2009)

EPR Steering

Another manifestation of quantum non-locality

Bell nonlocality

$$
p(a b \mid x y) \neq \sum_{\lambda} \pi(\lambda) p_{A}(a \mid x, \lambda) p_{B}(b \mid y, \lambda)
$$

Bell nonlocality and EPR Steering

$p(a b \mid x y) \neq \sum_{\lambda} \pi(\lambda) p_{A}(a \mid x, \lambda) p_{B}(b \mid y, \lambda)$

$$
p(a b \mid x y) \neq \sum_{\lambda} \pi(\lambda) p_{A}(a \mid x, \lambda) \operatorname{tr}\left(\rho_{\lambda} B_{b \mid y}\right)
$$

Bell NL, JM, and EPR STE

Bell NL, JM, and EPR STE

Bell NL, JM, and EPR STE

Bell NL, JM, and EPR STE

H. M. Wiseman, S. J. Jones, A. C. Doherty, PRL (2007)
A. Acin, N. Gisin, and .B Toner, PRA (2006)
B. S. Tsirelson, J. Soviet Math. (1987)
M.T. Quintino, T. Vertesi, N. Brunner, D. Cavalcanti, R. Augusiak, M. Demianowicz, A. Acín, N. Brunner PRA (2015)

Bell NL, JM, and EPR STE

M.T. Quintino, T. Vertesi, N. Brunner PRL (2014)
R. Uola, T. Moroder, and O. Gühne PRL (2014)

Bell NL, JM, and EPR STE

$\left\{A_{a \mid x}\right\}$ not JM
$\rho_{A B}$ is pure and entangled
$\left\{B_{b \mid y}\right\}$ is informationally complete:

$$
p(a b \mid x y)=\operatorname{tr}\left(\rho_{A B} A_{a \mid x} \otimes B_{b \mid y}\right) \text { is EPR Steerable }
$$

M.T. Quintino, T. Vertesi, N. Brunner PRL (2014)
R. Uola, T. Moroder, and O. Gühne PRL (2014)

Bell NL, JM, and EPR STE

OK... EPR steering is nice, but, what about Bell?

Bell nonlocality

Local hidden variable model

Quantum Scenarios

Local hidden variable model

$$
\begin{gathered}
W_{\eta}:=\eta\left|\phi^{+}\right\rangle\left\langle\phi^{+}\right|+(1-\eta) \frac{1}{4} \\
\left|\phi^{+}\right\rangle:=\frac{|00\rangle+|11\rangle}{\sqrt{2}}
\end{gathered}
$$

Local hidden variable model

$$
W_{\eta}:=\eta\left|\phi^{+}\right\rangle\left\langle\phi^{+}\right|+(1-\eta) \frac{l}{4}
$$

For $\eta \leq 1 / 2$, there exists a Local Hidden Variable model
R. Werner, PRA (1989)

Local hidden variable model
(A)

Local hidden variable model

(A)

(B)

Bell nonlocality

$$
\begin{gathered}
p(a b \mid \times y)=\operatorname{tr}\left(\rho_{A B}^{\eta} A_{a \mid x} \otimes B_{b \mid y}\right) \\
\rho_{A B}^{\eta}:=\eta \rho_{A B}+(1-\eta) \frac{l}{d} \otimes \rho_{B} \\
\rho_{B}:=\operatorname{tr}_{A}\left(\rho_{A B}\right)
\end{gathered}
$$

Bell nonlocality

$$
\begin{gathered}
\operatorname{tr}\left(\rho_{A B}^{\eta} A_{\mathrm{a} \mid x} \otimes B_{b \mid y}\right)=\operatorname{tr}\left(\rho_{A B} A_{\mathrm{a} \mid x}^{\eta} \otimes B_{b \mid y}\right) \\
A_{\mathrm{a} \mid x}^{\eta}:=\eta A_{\mathrm{a} \mid x}+(1-\eta) \frac{l}{d} \operatorname{tr}\left(A_{\mathrm{a} \mid x}\right)
\end{gathered}
$$

Local hidden variable model

LHV model for the class:

$$
\begin{gathered}
W_{\eta, \theta}:=\eta\left|\phi^{\theta}\right\rangle\left\langle\phi^{\theta}\right|+(1-\eta) \frac{l}{2} \otimes \rho_{\theta} \\
\left|\phi^{\theta}\right\rangle:=\sin (\theta)|00\rangle+\cos (\theta)|11\rangle, \quad \rho_{\theta}:=\operatorname{tr}_{A}\left(\left|\phi^{\theta}\right\rangle\left\langle\phi^{\theta}\right|\right.
\end{gathered}
$$

in a range where there are noisy incompatible measurements

Local hidden variable model

$$
\begin{aligned}
W_{\eta, \theta} & :=\eta\left|\phi^{\theta}\right\rangle\left\langle\phi^{\theta}\right|+(1-\eta) \frac{l}{2} \otimes \rho_{\theta} \\
\cos ^{2}(\theta) & \geq \frac{2 \eta-1}{(2-\eta) \eta^{3}} \Longrightarrow \text { LHV model }
\end{aligned}
$$

J. Bowles, F. Hirsch, M.T. Quintino, N. Brunner, PRL (2016)

Local hidden variable model

$$
\begin{aligned}
W_{\eta, \theta} & :=\eta\left|\phi^{\theta}\right\rangle\left\langle\phi^{\theta}\right|+(1-\eta) \frac{l}{2} \otimes \rho_{\theta} \\
\cos ^{2}(\theta) & \geq \frac{2 \eta-1}{(2-\eta) \eta^{3}} \Longrightarrow \text { LHV model }
\end{aligned}
$$

For $\eta>1 / 2,\left\{A_{a \mid x}\right\}$ is no JM .
But for $\theta=\pi / 4$ the model returns $\eta=1 / 2 \ldots$

Local hidden variable model

For the maximally entangled state, we have Grothendieck!

Local hidden variable model

Journal of Soviet Mathematics, vol. 36, number 4. PP. 557-570.

Quantum analogues of the bell inequalities. the case or TWO SPATIALLY SEPARATED DOMAINS
B. S. Tsirel'son
significantly simpler manner in terms of vectors in a Euclidean space. Then it becomes clear that the constant K. is nothing else but Grothendieck's well known constant K_{G}, investgated by mathematicians from 1956 up to now!

Regarding the problem of the Grothendieck constant, we refer the reader to [11]. It is proved there that

$$
K_{G} \leqslant \frac{\pi}{2 \ln (1+\sqrt{2})} \approx 1.782 .
$$

Local hidden variable model

$$
W_{\eta}:=\eta\left|\phi^{+}\right\rangle\left\langle\phi^{+}\right|+(1-\eta) \frac{l}{4}
$$

LHV for $\eta \leq \frac{1}{K_{G}(3)}$, and $K_{G}(3)<2$
A. Acin, N. Gisin, B. Toner, PRA (2006)
B. Tsirelson, J. Soviet Math. (1987)
J. L. Krivine, Adv. Math. (1979)

Local hidden variable model

This Grothendieck approach only work for projective measurements...

Bell NL and JM

LHV Model+Grothendieck+LHV extention based on PPT:

M.T. Quintino, J. Bowles, F. Hirsch, N. Brunner, PRA (2016)

Bell NL, JM, and EPR STE

Bell NL, JM, and EPR STE

Nice, but. . .
Bob can do POVMs...

Bell NL, JM, and EPR STE

Nice, but. . .
Bob can do POVMs...
Normally, constructing LHV models is requires a lot of creativity

Local hidden variable model

How about using the computer to find LHV models for us?

M.T. Quintino, F. Hirsch, T. Vertesi, M. Pusey, N. Brunner, PRL (2016)
D. Cavalcanti, L. Guerini, R. Rabelo, P. Skrzypczyk, PRL (2016)

Bell NL and JM

Challenge accepted:

F. Hirsch, M.T. Quintino, N. Brunner, PRA (2018)

Bell NL and JM

Three planar measurements:

E. Bene, T. Vertesi, NJP (2018)

Bell NL, JM, and EPR STE

Open questions

- Direct/intuitive LHV model for incompatible measurements?

Open questions

- Direct/intuitive LHV model for incompatible measurements?
- Simple criteria for measurement Bell NL?

Open questions

- Direct/intuitive LHV model for incompatible measurements?
- Simple criteria for measurement Bell NL?
- Natural manners to "activate" measurement NL?

Open questions

- Direct/intuitive LHV model for incompatible measurements?
- Simple criteria for measurement Bell NL?
- Natural manners to "activate" measurement NL?
- How measurement locality relate to other areas of quantum info?

Thank you!

Thank you!

