Success-or-draw: A strategy allowing repeat-until-success in quantum computation

Qingxiuxiong Dong, Marco Túlio Quintino, Akihito Soeda, Mio Murao

IQOQI-Vienna/University of Vienna + The University of Tokyo
July 8, 2021

Phys. Rev. Lett. 126, 150504 (2021) - arXiv:2011.01055

Probabilistic quantum unitary transformations

$$
U \mapsto f(U)
$$

Probabilistic quantum unitary transformations

$$
U \mapsto f(U)
$$

Probabilistic quantum unitary transformations

Phys. Rev. Research 1, 013007 (2019)
J. Miyazaki, A. Soeda, and M. Murao

Probabilistic quantum unitary transformations

$$
U \mapsto p f(U)
$$

Probabilistic quantum unitary transformations

Probabilistic quantum unitary transformations

- Universal (also works for "unknown" d-dimensional unitary)

Probabilistic quantum unitary transformations

- Universal (also works for "unknown" d-dimensional unitary)
- Probabilistic but exact

Probabilistic quantum unitary transformations

- Universal (also works for "unknown" d-dimensional unitary)
- Probabilistic but exact
- We know when it fails (Probabilistic heralded)

Increasing the success probability

The desired transformation is possible with probability p_{U}

$$
U \mapsto p_{U} f(U)
$$

Increasing the success probability

The desired transformation is possible with probability p_{U}

$$
U \mapsto p_{U} f(U)
$$

How can we increase the success probability?

Increasing the success probability

Standard trick: repeat-until-success

Probabilistic quantum unitary transformations

- Coin tossing:

Probabilistic quantum unitary transformations

- Coin tossing:

- If p is the probability of getting heads in a single toss

Probabilistic quantum unitary transformations

- Coin tossing:

- If p is the probability of getting heads in a single toss
- With n trials, the probability of getting heads at least once:

$$
p_{s}(n)=1-(1-p)^{n}
$$

Probabilistic quantum unitary transformations

- That's great, if $U \mapsto p_{U} f(U)$, repeat-until-success provides a method where the probability of failure decreases exponentially!

Probabilistic quantum unitary transformations

- That's great, if $U \mapsto p_{U} f(U)$, repeat-until-success provides a method where the probability of failure decreases exponentially!
- But...

Probabilistic quantum unitary transformations

- That's great, if $U \mapsto p_{U} f(U)$, repeat-until-success provides a method where the probability of failure decreases exponentially!
- But...
- It depends on how we fail...

Probabilistic quantum unitary transformations

- That's great, if $U \mapsto p_{U} f(U)$, repeat-until-success provides a method where the probability of failure decreases exponentially!
- But...
- It depends on how we fail...
- We need success-or-draw!

Probabilistic quantum unitary transformations

Increasing the success probability

Probabilistic quantum unitary transformations

- But well... can such a thing exist?

Probabilistic quantum unitary transformations

- But well...can such a thing exist?
- What about "measurement disturbs the state", "no-cloning" and all these quantum bad guys?

Probabilistic quantum unitary transformations

- But well...can such a thing exist?
- What about "measurement disturbs the state", "no-cloning" and all these quantum bad guys?
- Example?

Explicit construction

Reversing Unknown Quantum Transformations:
Universal Quantum Circuit for Inverting General Unitary Operations
M. T. Quintino, Q. Dong, A. Shimbo, A. Soeda, M. Murao

Phys. Rev. Lett. 123, 210502 (2019)

Explicit construction

$$
\left|\phi^{+}\right\rangle:=\frac{|00\rangle+|11\rangle}{\sqrt{2}}, \quad \mathcal{M}:=\left\{i d \otimes\left(\sigma_{X}^{i} \sigma_{Z}^{j}\right)\left|\phi^{+}\right\rangle\right\}_{i j}
$$

Explicit construction

Explicit construction

Since U is "unknown", we cannot invert $\sigma_{Z}^{i} \sigma_{X}^{j} U^{-1}$

Explicit construction

An extra call of U allows success-or-draw

Success-or-draw

- For qubit unitary inversion, with 2-calls, success-or-draw is possible!

Success-or-draw

- For qubit unitary inversion, with 2-calls, success-or-draw is possible!
- But...

Success-or-draw

- For qubit unitary inversion, with 2-calls, success-or-draw is possible!
- But...
- qubit unitary inversion...

Success-or-draw

- For qubit unitary inversion, with 2-calls, success-or-draw is possible!
- But...
- qubit unitary inversion...
- what a particular example...

Success-or-draw

- For qubit unitary inversion, with 2-calls, success-or-draw is possible!
- But...
- qubit unitary inversion...
- what a particular example...
- how about general transformations $f(U)$??

Success-or-draw

- For qubit unitary inversion, with 2-calls, success-or-draw is possible!
- But...
- qubit unitary inversion...
- what a particular example...
- how about general transformations $f(U)$??
- Actually, success-or-draw is always possible!

Success-or-draw

- For qubit unitary inversion, with 2-calls, success-or-draw is possible!
- But...
- qubit unitary inversion...
- what a particular example...
- how about general transformations $f(U)$??
- Actually, success-or-draw is always possible!
- and we need at most d calls of the input-gate U

Success-or-draw

Theorem
Success-or-draw is always possible!

Success-or-draw

Theorem
Success-or-draw is always possible with length 2 and d calls or U :

\Downarrow

Success-or-draw

Theorem
If there exists a quantum circuit such that

$$
U \mapsto p_{U} f(U)
$$

there is a depth-2 success-or-draw circuit such that

$$
U^{\otimes d} \mapsto \epsilon p_{U} f(U), \quad \epsilon>0
$$

Methods

- Quantum combs, superinstruments, Choi representation Quantum Circuits Architecture
G. Chiribella, G.M. D'Ariano, P. Perinotti

Phys. Rev. Lett. 101, 060401 (2008)

Methods

- Quantum combs, superinstruments, Choi representation Quantum Circuits Architecture
G. Chiribella, G.M. D'Ariano, P. Perinotti

Phys. Rev. Lett. 101, 060401 (2008)

- $\left.\left.S_{t} *|U\rangle\right\rangle\langle U|=p_{U}|f(U)\rangle\right\rangle\langle f(U)|$, and $F \geq$ such that $S_{t}+F=C$

Methods

- Quantum combs, superinstruments, Choi representation Quantum Circuits Architecture
G. Chiribella, G.M. D'Ariano, P. Perinotti

Phys. Rev. Lett. 101, 060401 (2008)

- $\left.\left.S_{t} *|U\rangle\right\rangle\left\langle\langle U|=p_{U} \mid f(U)\right\rangle\right\rangle\langle\langle f(U)|$, and $F \geq$ such that $S_{t}+F=C$
- We seek for $S \geq 0$ and $N \geq 0$ such that $S+N$ is a k-slot comb,

$$
\left.S *|U\rangle\rangle\left\langle\left. U\right|^{\otimes k}=\epsilon p_{U} \mid f(U)\right\rangle\right\rangle\langle\langle f(U)|
$$

and

$$
\left.N *|U\rangle\rangle\left\langle\left. U\right|^{\otimes k} \propto \mid i d\right\rangle\right\rangle\langle i d|
$$

Methods

- Quantum combs, superinstruments, Choi representation Quantum Circuits Architecture
G. Chiribella, G.M. D'Ariano, P. Perinotti

Phys. Rev. Lett. 101, 060401 (2008)

- $\left.\left.S_{t} *|U\rangle\right\rangle\left\langle\langle U|=p_{U} \mid f(U)\right\rangle\right\rangle\langle\langle f(U)|$, and $F \geq$ such that $S_{t}+F=C$
- We seek for $S \geq 0$ and $N \geq 0$ such that $S+N$ is a k-slot comb,

$$
\left.S *|U\rangle\rangle\left\langle\left. U\right|^{\otimes k}=\epsilon p_{U} \mid f(U)\right\rangle\right\rangle\langle\langle f(U)|
$$

and

$$
\left.N *|U\rangle\rangle\left\langle\left. U\right|^{\otimes k} \propto \mid i d\right\rangle\right\rangle\langle i d|
$$

- We show that N neutralises when

$$
\left.N * \Pi_{\text {sym }}^{\mathcal{I O}} \propto|i d\rangle\right\rangle\langle i d|
$$

where $\Pi_{\text {sym }}=\sum_{\sigma} P_{\sigma}^{\mathcal{I}} \otimes P_{\sigma}^{\mathcal{O}}$

Methods

- Quantum combs, superinstruments, Choi representation Quantum Circuits Architecture
G. Chiribella, G.M. D'Ariano, P. Perinotti

Phys. Rev. Lett. 101, 060401 (2008)

- $\left.\left.S_{t} *|U\rangle\right\rangle\left\langle\langle U|=p_{U} \mid f(U)\right\rangle\right\rangle\langle\langle f(U)|$, and $F \geq$ such that $S_{t}+F=C$
- We seek for $S \geq 0$ and $N \geq 0$ such that $S+N$ is a k-slot comb,

$$
\left.S *|U\rangle\rangle\left\langle\left. U\right|^{\otimes k}=\epsilon p_{U} \mid f(U)\right\rangle\right\rangle\langle\langle f(U)|
$$

and

$$
\left.N *|U\rangle\rangle\left\langle\left. U\right|^{\otimes k} \propto \mid i d\right\rangle\right\rangle\langle i d|
$$

- We show that N neutralises when

$$
\left.N * \Pi_{\text {sym }}^{\mathcal{I O}} \propto|i d\rangle\right\rangle\langle\langle i d|
$$

where $\Pi_{\text {sym }}=\sum_{\sigma} P_{\sigma}^{\mathcal{I}} \otimes P_{\sigma}^{\mathcal{O}}$

- We set $S:=\epsilon S_{t} \otimes i d$ and construct a neutralising operator N via a nice Pauli decomposition

Success-or-draw

Theorem
Success-or-draw is always possible with length 2 and d calls or U :

OK, but how about this ϵ ?

Optimising the success probability

Given a desired function f and the number of uses k, maximising the success-or-draw circuit

$$
U^{\otimes k} \mapsto p f(U)
$$

is a semidefinite programming (SDP) problem!

Success-or-draw

SDP:
$\max p$
such that: $S *|U\rangle\rangle\left\langle\left\langle\left. U\right|^{\otimes k}=p \mid f(U)\right\rangle\right\rangle\langle\langle f(U)|, \quad \forall U$

$$
\begin{aligned}
& N *|U\rangle\rangle\left\langle\left\langle\left. U\right|^{\otimes k} \propto \mid i d\right\rangle\right\rangle\langle\langle i d|, \quad \forall U \\
& S+N=C \text { is a } k \text {-slot quantum comb }
\end{aligned}
$$

Success-or-draw

SDP allows us to find interesting things Qubit unitary inversion can be improved:

Summary

- Repeat-until-success strategies is a simple/natural method to ensure success

Summary

- Repeat-until-success strategies is a simple/natural method to ensure success
- For that, we need success-or-draw

Summary

- Repeat-until-success strategies is a simple/natural method to ensure success
- For that, we need success-or-draw
- Success-or-draw is always possible

Summary

- Repeat-until-success strategies is a simple/natural method to ensure success
- For that, we need success-or-draw
- Success-or-draw is always possible
- We require d uses of the unitary in a length 2 circuit

Summary

- Repeat-until-success strategies is a simple/natural method to ensure success
- For that, we need success-or-draw
- Success-or-draw is always possible
- We require d uses of the unitary in a length 2 circuit
- Particular cases may be analysed via SDP

Future?

- Proof of principle + fine analysis via SDP, but no "friendly" intermediate result

Future?

- Proof of principle + fine analysis via SDP, but no "friendly" intermediate result
- Good bounds for ϵ

Future?

- Proof of principle + fine analysis via SDP, but no "friendly" intermediate result
- Good bounds for ϵ
- Start with more than one call of the gate U ?

Future?

- Proof of principle + fine analysis via SDP, but no "friendly" intermediate result
- Good bounds for ϵ
- Start with more than one call of the gate U ?
- It would be nice to see a more concrete application...

Thank you!

