Reversing Unknown Quantum Transformations:
 a Universal Quantum Circuit For Inverting General
 Unitary Operations

Marco Túlio Quintino, Qingxiuxiong Dong, Atsushi Shimbo, Akihito Soeda, Mio Murao

The University of Tokyo

THE UNIVERSITY OF TOKYO

Phys. Rev. Lett. 123, 180401 and Phys. Rev. A 100, 062339

"Quantum" unitary inversion

$$
U_{d} \mapsto U_{d}^{-1}
$$

The universal/unknown paradigm

$$
\sigma_{Z}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]=\sigma_{Z}^{-1}
$$

What do we want?

What do we want?

Ideally...

Something like this:

Phys. Rev. Research 1, 013007 (2019)
J. Miyazaki, A. Soeda, and M. Murao

What do we want?

Something like this:

$$
\begin{aligned}
& \sqrt[\sigma_{Y}]{U_{2}}-\sigma_{Y}=-U_{2}^{*} \\
& \sigma_{Y} U_{2} \sigma_{Y}=U_{2}^{*}, \forall U_{2} \in S U(2)
\end{aligned}
$$

Phys. Rev. Research 1, 013007 (2019)
J. Miyazaki, A. Soeda, and M. Murao

What do we want?

Understand better transformations between operations

What do we want?

- Universal (also works for "unknown" d-dimensional unitary)

What do we want?

- Universal (also works for "unknown" d-dimensional unitary)
- Exact

What do we want?

- Universal (also works for "unknown" d-dimensional unitary)
- Exact
- Possible?

What do we want?

- Universal (also works for "unknown" d-dimensional unitary)
- Exact
- Possible?
- Optimal average fidelity: $F_{\max }=\frac{2}{d^{2}}$
G. Chiribella and D. Ebler, New Journal of Physics (2016)

What do we want?

- Universal (also works for "unknown" d-dimensional unitary)
- Exact
- Possible?
- Optimal average fidelity: $F_{\max }=\frac{2}{d^{2}}$
G. Chiribella and D. Ebler, New Journal of Physics (2016)
- $F_{\text {max }}<1 \Longrightarrow$ Impossible...

What do we want?

Probabilistic heralded?

What do we want?

Probabilistic heralded? For qubits, Possible!

Explicit construction

Explicit construction

Explicit construction

$$
\begin{gathered}
\left|\phi_{2}^{+}\right\rangle \\
\hdashline t_{0} \\
\text { With } p=\frac{1}{4}, \quad U_{2} \mapsto U_{2}^{-1} \\
\text { Delayed input-state }
\end{gathered}
$$

We want more!

- Is it optimal?

We want more!

- Is it optimal?
- Qubits are nice, but what about general qudits?

We want more!

- Is it optimal?
- Qubits are nice, but what about general qudits?
- How can we increase the success probability?

We want more!

- Is it optimal?
- Qubits are nice, but what about general qudits?
- How can we increase the success probability?
- Higher-order operations and supermaps!

Superchannels

G. Chiribella, G. M. D'Ariano, and P. Perinotti, EPL (2008)
K. Życzkowski J. Phys. A 41, 355302-23 (2008)

Superchannels

The most general quantum superchannel?
G. Chiribella, G. M. D'Ariano, and P. Perinotti, EPL (2008)
K. Życzkowski J. Phys. A 41, 355302-23 (2008)

Superchannels

The most general quantum superchannel:

$$
\widetilde{\widetilde{S}}\left(\widetilde{\Lambda_{\text {in }}}\right)=\widetilde{\Lambda_{\text {out }}}=\widetilde{D} \circ\left(\widetilde{\Lambda_{\text {in }}} \otimes \widetilde{I_{A}}\right) \circ \widetilde{E}
$$

G. Chiribella, G. M. D'Ariano, and P. Perinotti, EPL (2008)
K. Życzkowski J. Phys. A 41, 355302-23 (2008)

We want more!

- Is it optimal?

We want more!

- Is it optimal?
- Yes! $d=2 \Longrightarrow p \leq \frac{1}{4}$

We want more!

- Is it optimal?
- Yes! $d=2 \Longrightarrow p \leq \frac{1}{4}$
- Qubits are nice, but what about general qudits?

We want more!

- Is it optimal?
- Yes! $d=2 \Longrightarrow p \leq \frac{1}{4}$
- Qubits are nice, but what about general qudits?
- $d>2 \Longrightarrow p=0$

We want more!

- Is it optimal?
- Yes! $d=2 \Longrightarrow p \leq \frac{1}{4}$
- Qubits are nice, but what about general qudits?
- $d>2 \Longrightarrow p=0$
- How can we increase the success probability?

We want more!

- Is it optimal?
- Yes! $d=2 \Longrightarrow p \leq \frac{1}{4}$
- Qubits are nice, but what about general qudits?
- $d>2 \Longrightarrow p=0$
- How can we increase the success probability?
- More calls/copies

(Quantum combs, channel with memory, quantum strategy, quantum channels with sequential multiple uses)

Results

- Parallel $(d=2): \quad p=1-\frac{3}{k+3}$

Results

- Parallel $(d=2)$:

$$
p=1-\frac{3}{k+3}
$$

- Parallel $(k<d-1): \quad p=0$

Results

- Parallel $(d=2)$:

$$
p=1-\frac{3}{k+3}
$$

- Parallel $(k<d-1): \quad p=0$
- Parallel $(k \geq d-1)$:
$1-\frac{1}{k} \sim 1-\frac{d^{2}-1}{\left\lfloor\frac{k}{d-1}\right\rfloor+d^{2}-1} \leq p \leq 1-\frac{d^{2}-1}{k(d-1)+d^{2}-1} \sim 1-\frac{1}{k}$

Results

- Parallel $(d=2)$:

$$
p=1-\frac{3}{k+3}
$$

- Parallel $(k<d-1): \quad p=0$
- Parallel $(k \geq d-1)$:
$1-\frac{1}{k} \sim 1-\frac{d^{2}-1}{\left\lfloor\frac{k}{d-1}\right\rfloor+d^{2}-1} \leq p \leq 1-\frac{d^{2}-1}{k(d-1)+d^{2}-1} \sim 1-\frac{1}{k}$
- Optimal parallel \Longrightarrow delayed input-state

Results

- Parallel $(d=2)$:

$$
p=1-\frac{3}{k+3}
$$

- Parallel $(k<d-1): \quad p=0$
- Parallel $(k \geq d-1)$:
$1-\frac{1}{k} \sim 1-\frac{d^{2}-1}{\left\lfloor\frac{k}{d-1}\right\rfloor+d^{2}-1} \leq p \leq 1-\frac{d^{2}-1}{k(d-1)+d^{2}-1} \sim 1-\frac{1}{k}$
- Optimal parallel \Longrightarrow delayed input-state
- Sequential $(k<d-1): p=0$

Results

- Parallel $(d=2)$:

$$
p=1-\frac{3}{k+3}
$$

- Parallel $(k<d-1): \quad p=0$
- Parallel $(k \geq d-1)$:
$1-\frac{1}{k} \sim 1-\frac{d^{2}-1}{\left\lfloor\frac{k}{d-1}\right\rfloor+d^{2}-1} \leq p \leq 1-\frac{d^{2}-1}{k(d-1)+d^{2}-1} \sim 1-\frac{1}{k}$
- Optimal parallel \Longrightarrow delayed input-state
- Sequential $(k<d-1): p=0$
- Sequential $(k \geq d-1): p \geq 1-\left(1-\frac{1}{d^{2}}\right)^{\left\lceil\frac{k+2-d}{d}\right\rceil} \sim 1-\frac{1}{e^{k}}$

Qubit adaptive circuit

if $i=j=0$, one has $\left|\psi_{\text {out }}\right\rangle=U_{2}^{-1}\left|\psi_{\text {in }}\right\rangle$ else, apply $Z^{-j} X^{-i} U_{2}$ on $\left|\psi_{\text {out }}\right\rangle$,
recover $\left|\psi_{\text {in }}\right\rangle$ and re-start the protocol

Unitary transposition

Unitary complex conjugation

Unitary complex conjugation

$$
\begin{gathered}
V_{A}: \mathbb{C}_{d} \rightarrow \mathbb{C}_{d}{ }^{\otimes d-1} \\
V_{A}:=\sum_{\tau \in S_{d}} \frac{\operatorname{sgn}(\tau)}{\sqrt{(d-1)!}}\left|\tau_{2}, \ldots, \tau_{d}\right\rangle\left\langle\tau_{1}\right|
\end{gathered}
$$

Phys. Rev. Research 1, 013007 (2019)
J. Miyazaki, A. Soeda, and M. Murao

Qudit $k=d-1$ parallel circuits

Optimal parallel unitary complex conjugation

Phys. Rev. Research 1, 013007 (2019)
J. Miyazaki, A. Soeda, and M. Murao

$$
k<d-1 \Longrightarrow p=0
$$

Optimal parallel unitary transposition

Port-Based Teleportation: S. Ishizaka and T. Hiroshima, PRL (2008)
M. Studziński, S. Strelchuk, M. Mozrzymas, M. Horodecki, Sci. Rep. (2017)

Unitary store and retrieve: M. Sedlák, A. Bisio, and M. Ziman, PRL (2019):

More general superchannels?

Can we go beyond sequential quantum circuits?

More general superchannels?

Quantum Switch:

Quantum computations without definite causal structure
G. Chiribella, G. M. D'Ariano, P. Perinotti, B. Valiron

PRA 2013

More general superchannels?

$$
\widetilde{\widetilde{S}}\left(\widetilde{\Lambda_{1}} \otimes \widetilde{\Lambda_{2}}\right)=\widetilde{\Lambda_{o u t}}
$$

More general superchannels?

$$
\widetilde{\widetilde{S}}\left(\widetilde{\Lambda}_{1} \otimes{\left.\widetilde{\Lambda_{2}}\right)=\widetilde{\Lambda_{\text {out }}}}_{\underline{\Lambda_{1}}}\right.
$$

Process Matrices! (May have an indefinite causal order)
G. Chiribella, G. M. D'Ariano, P. Perinotti, and B. Valiron, PRA (2013)
O. Oreshkov, F. Costa, and Č. Brukner, Nature Communications (2012)

Process matrices

- Process matrices with indefinite causal order are not (explicitly) forbidden by quantum mechanics...

Process matrices

- Process matrices with indefinite causal order are not (explicitly) forbidden by quantum mechanics...
- How powerful are them for this particular task?

Process matrices

- Process matrices with indefinite causal order are not (explicitly) forbidden by quantum mechanics...
- How powerful are them for this particular task?
- If $k<d-1, p=0$

Process matrices

- Process matrices with indefinite causal order are not (explicitly) forbidden by quantum mechanics...
- How powerful are them for this particular task?
- If $k<d-1, p=0$
- If $k \geq d-1, p=$???

SemiDefinite Programming

$\max p$
s.t.

$$
\begin{aligned}
& \widetilde{\widetilde{S}}\left(\widetilde{\left.U_{d}^{\otimes k}\right)=p \widetilde{U_{d}^{-1}}, \quad \forall \widetilde{U_{d}}}\right. \\
& \widetilde{\widetilde{S}} \in \text { Some desired set }
\end{aligned}
$$

Where, $\widetilde{U_{d}}(\rho):=U_{d} \rho U_{d}^{-1}$

Maximall success probability

$d=2$	Parallel	Sequential	Indefinite causal order
$k=1$	$\frac{1}{4}=0.25$	$\frac{1}{4}=0.25$	$\frac{1}{4}=0.25$
$k=2$	$\frac{2}{5}=0.4$	$0.4286 \approx \frac{3}{7}$	$0.4444 \approx \frac{4}{9}$
$k=3$	$\frac{1}{2}=0.5$	$0.7500 \approx \frac{3}{4}$	0.9417
$d=3$	Parallel	Sequential	Indefinite causal order
$k=1$	0	0	0
$k=2$	$\frac{1}{9} \approx 0.1111$	$0.1111 \approx \frac{1}{9}$	$0.1111 \approx \frac{1}{9}$

Figure: Optimal success probability of a heralded protocol that implements the inverse U_{d}^{-1} with k uses of U_{d}.

Final remarks

- Universal unitary inversion is possible! Parallel: $p \sim 1-\frac{1}{k}$, Sequential: $p \sim 1-\frac{1}{e^{k}}$

Final remarks

- Universal unitary inversion is possible! Parallel: $p \sim 1-\frac{1}{k}$, Sequential: $p \sim 1-\frac{1}{e^{k}}$
- But not always ($k \geq d-1$ calls are required)

Final remarks

- Universal unitary inversion is possible! Parallel: $p \sim 1-\frac{1}{k}$, Sequential: $p \sim 1-\frac{1}{e^{k}}$
- But not always ($k \geq d-1$ calls are required)

Final remarks

- Universal unitary inversion is possible! Parallel: $p \sim 1-\frac{1}{k}$, Sequential: $p \sim 1-\frac{1}{e^{k}}$
- But not always ($k \geq d-1$ calls are required)
- More intuition on superchannels

Final remarks

- Universal unitary inversion is possible! Parallel: $p \sim 1-\frac{1}{k}$, Sequential: $p \sim 1-\frac{1}{e^{k}}$
- But not always ($k \geq d-1$ calls are required)
- More intuition on superchannels
- New methods/concepts, general SDP approach

Final remarks

- Universal unitary inversion is possible! Parallel: $p \sim 1-\frac{1}{k}$, Sequential: $p \sim 1-\frac{1}{e^{k}}$
- But not always ($k \geq d-1$ calls are required)
- More intuition on superchannels
- New methods/concepts, general SDP approach
- Power and limitation of indefinite causal order

Final remarks

- Universal unitary inversion is possible! Parallel: $p \sim 1-\frac{1}{k}$, Sequential: $p \sim 1-\frac{1}{e^{k}}$
- But not always ($k \geq d-1$ calls are required)
- More intuition on superchannels
- New methods/concepts, general SDP approach
- Power and limitation of indefinite causal order
- Applications?

Final remarks

- Universal unitary inversion is possible! Parallel: $p \sim 1-\frac{1}{k}$, Sequential: $p \sim 1-\frac{1}{e^{k}}$
- But not always ($k \geq d-1$ calls are required)
- More intuition on superchannels
- New methods/concepts, general SDP approach
- Power and limitation of indefinite causal order
- Applications?
- Delayed input-state protocols:

Thank you!

