Semi－device－independent certification of indefinite causal order

Marco Túlio Quintino

December 18， 2019

Quantum 3， 176 （2019），arXiv：1903．10526
Jessica Bavaresco，Mateus Araujo，Časlav Brukner，Marco Túlio Quintino
東京大亲 大 学

Personal motivation

Personal motivation

- Find minimal assumptions for some particular claim

Personal motivation

- Find minimal assumptions for some particular claim
- Claim more with some fixed set of assumptions

Personal motivation

- Find minimal assumptions for some particular claim
- Claim more with some fixed set of assumptions
- Extracting maximal conclusions of physical experiments

Quantum entanglement

$$
\rho_{A B} \neq \sum_{\lambda} \pi(\lambda) \rho_{A \mid \lambda} \otimes \rho_{B \mid \lambda}
$$

Certification of entanglement

Certification of entanglement

$$
p(a b \mid x y)=\operatorname{tr}\left(\rho_{A B} \bar{A}_{a \mid x} \otimes \bar{B}_{b \mid y}\right)
$$

- "Just" set $\bar{A}_{a \mid x}$ and $\bar{B}_{b \mid y}$ as trusted tomography complete measurements

Certification of entanglement

$$
p(a b \mid x y)=\operatorname{tr}\left(\rho_{A B} \bar{A}_{a \mid x} \otimes \bar{B}_{b \mid y}\right)
$$

- "Just" set $\bar{A}_{a \mid x}$ and $\bar{B}_{b \mid y}$ as trusted tomography complete measurements
- Or just violate some entanglement witness

Device-independent certification of entanglement

- If

$$
p(a b \mid x y) \neq \sum_{\lambda} \pi(\lambda) p_{A}(a \mid x, \lambda) p_{B}(b \mid y, \lambda)
$$

Device-independent certification of entanglement

- If

$$
p(a b \mid x y) \neq \sum_{\lambda} \pi(\lambda) p_{A}(a \mid x, \lambda) p_{B}(b \mid y, \lambda)
$$

- and the probabilities respect $p(a b \mid x y)=\operatorname{tr}\left(\rho_{A B} A_{a \mid x} \otimes B_{b \mid y}\right)$

Device-independent certification of entanglement

- If

$$
p(a b \mid x y) \neq \sum_{\lambda} \pi(\lambda) p_{A}(a \mid x, \lambda) p_{B}(b \mid y, \lambda)
$$

- and the probabilities respect $p(a b \mid x y)=\operatorname{tr}\left(\rho_{A B} A_{a \mid x} \otimes B_{b \mid y}\right)$
- Device-independent entanglement certification

Device-independent certification of entanglement

- If

$$
p(a b \mid x y) \neq \sum_{\lambda} \pi(\lambda) p_{A}(a \mid x, \lambda) p_{B}(b \mid y, \lambda)
$$

- and the probabilities respect $p(a b \mid x y)=\operatorname{tr}\left(\rho_{A B} A_{a \mid x} \otimes B_{b \mid y}\right)$
- Device-independent entanglement certification
- Bell inequalities are device-independent entanglement witnesses

Device-independent certification of entanglement

- Certify entanglement with less hypothesis

Device-independent certification of entanglement

- Certify entanglement with less hypothesis
- Allows device-independent protocols

Device-independent certification of entanglement

- Certify entanglement with less hypothesis
- Allows device-independent protocols
- Some entangled states cannot be certified in a device-independent way (e.g., some Werner states)

Device-independent certification of entanglement

- Certify entanglement with less hypothesis
- Allows device-independent protocols
- Some entangled states cannot be certified in a device-independent way (e.g., some Werner states)
- It is experimentally challenging

Semi-device-independent certification of entanglement

- Analyse $p(a b \mid x y)$ assuming Bob's measurements are known
H. M. Wiseman, S. J. Jones, A. C. Doherty, PRL (2007)

Semi-device-independent certification of entanglement

- Analyse $p(a b \mid x y)$ assuming Bob's measurements are known

$$
p(a b \mid x y)^{Q}=\operatorname{tr}\left(\rho_{A B} A_{a \mid x} \otimes \bar{B}_{b \mid y}\right)
$$

H. M. Wiseman, S. J. Jones, A. C. Doherty, PRL (2007)

Semi-device-independent certification of entanglement

- Analyse $p(a b \mid x y)$ assuming Bob's measurements are known

$$
p(a b \mid x y)^{Q}=\operatorname{tr}\left(\rho_{A B} A_{a \mid x} \otimes \bar{B}_{b \mid y}\right)
$$

- Separable state limitation:

$$
p(a b \mid x y)^{\text {sep }}=\operatorname{tr}\left(\rho_{A B}^{\text {sep }} A_{a \mid x} \otimes \bar{B}_{b \mid y}\right)
$$

H. M. Wiseman, S. J. Jones, A. C. Doherty, PRL (2007)

Semi-device-independent certification of entanglement

- Analyse $p(a b \mid x y)$ assuming Bob's measurements are known

$$
p(a b \mid x y)^{Q}=\operatorname{tr}\left(\rho_{A B} A_{a \mid x} \otimes \bar{B}_{b \mid y}\right)
$$

- Separable state limitation:

$$
p(a b \mid x y)^{\text {sep }}=\operatorname{tr}\left(\rho_{A B}^{\mathrm{sep}} A_{a \mid x} \otimes \bar{B}_{b \mid y}\right)
$$

- Unsteerable assemblage:

$$
\begin{gathered}
p(a b \mid x y)=\operatorname{tr}\left(\sigma_{a \mid x}^{\mathrm{uns}} \bar{B}_{b \mid y}\right) \\
\left.\sigma_{a \mid x}^{\mathrm{uns}}:=\operatorname{tr}_{A}\left(\rho_{A B}^{\mathrm{sep}} A_{a \mid x} \otimes I\right)\right)
\end{gathered}
$$

H. M. Wiseman, S. J. Jones, A. C. Doherty, PRL (2007)

Applications of semi-device-independent certification

- Steering interpretation

Applications of semi-device-independent certification

- Steering interpretation
- Certifies more states than full device-independent (but still not all)

Applications of semi-device-independent certification

- Steering interpretation
- Certifies more states than full device-independent (but still not all)
- Experimentally simpler

Applications of semi-device-independent certification

- Steering interpretation
- Certifies more states than full device-independent (but still not all)
- Experimentally simpler
- One-side device independent protocols
C. Branciard, E.G. Cavalcanti, S. Walborn, V. Scarani, H. M. Wiseman, PRA (2012)

Applications of semi-device-independent certification

- Steering interpretation
- Certifies more states than full device-independent (but still not all)
- Experimentally simpler
- One-side device independent protocols C. Branciard, E.G. Cavalcanti, S. Walborn, V. Scarani, H. M. Wiseman, PRA (2012)
- Provides technical tools and good insights for the device-independent case

Abstract view on bipartite quantum systems

$p(a b \mid x y)=f\left(A_{a \mid x}, B_{b \mid y}\right)$

Abstract view on bipartite quantum states

The most general bi-linear function $f\left(A_{a \mid x}, B_{b \mid y}\right)$ that extract valid probability distributions from quantum measurements ${ }^{1}$ given by POVMs $A_{a \mid x} \in L(A)$ and $B_{b \mid y} \in L(B)$ is given by

$$
\operatorname{tr}\left(\rho_{A B} A_{a \mid x} \otimes B_{b \mid y}\right)
$$

where $\rho_{A B} \in L(A \otimes B)$ is a quantum state.

[^0]
More general scenarios

- And what if the parties can have a causal relation and exchange quantum systems?

More general scenarios

- And what if the parties can have a causal relation and exchange quantum systems?
- Instead of POVMs, Alice and Bob have quantum instruments

More general scenarios

- And what if the parties can have a causal relation and exchange quantum systems?
- Instead of POVMs, Alice and Bob have quantum instruments
- Quantum instruments have a "classical output" and a "quantum output"

Process matrix

The most general bi-linear function
$f\left(A_{a \mid x}, B_{b \mid y}\right)=\operatorname{tr}\left(A_{a \mid x} \otimes B_{b \mid y} W\right)$ that extract valid probability distributions from quantum instruments ${ }^{2}$ given by the Choi operators $A_{a \mid x} \in L\left(A_{l} \otimes A_{O}\right)$ and $B_{b \mid y} \in L\left(B_{I} \otimes B_{O}\right)$

[^1]
Process matrix

- If $\operatorname{tr}\left(A_{a \mid x} \otimes B_{b \mid y} W\right)=p(a b \mid x y)^{\mathrm{NS}}$ is non-signalling, the process is a quantum state $W=\rho_{A_{l}, B_{l}} \otimes I_{A_{O}, B_{O}}$

Process matrix

- If $\operatorname{tr}\left(A_{a \mid x} \otimes B_{b \mid y} W\right)=p(a b \mid x y)^{\mathrm{NS}}$ is non-signalling, the process is a quantum state $W=\rho_{A_{l}, B_{l}} \otimes I_{A_{O}, B_{O}}$
- If $\operatorname{tr}\left(A_{a \mid x} \otimes B_{b \mid y} W\right)=p(a b \mid x y)^{A<B}$, the process $W^{A<B}$ is a channel with memory/comb/ordered circuit

Quantum Channels with Memory (2005)
D. Kretschmann, R. F. Werner

Transforming quantum operations: quantum supermaps (2008)
G. Chiribella, G. M. D'Ariano, P. Perinotti enditemize

Causally separable process matrix

Causally separable:

$$
W^{\text {sep }}=q W^{A<B}+(1-q) W^{B<A},
$$

for some probability $0 \leq q \leq 1$.

Quantum correlations with no causal order (2011)
O. Oreshkov, F. Costa, C. Brukner

Process matrix

The most general bi-linear function $f\left(A_{a \mid x}, B_{b \mid y}\right)$ that extract valid probability distributions from quantum instruments ${ }^{3}$ given by the Choi operators $A_{a \mid x} \in L\left(A_{I} \otimes A_{O}\right)$ and $B_{b \mid y} \in L\left(B_{I} \otimes B_{O}\right)$ is

$$
p(a b \mid x y)=\operatorname{tr}\left(W A_{a \mid x} \otimes B_{b \mid y}\right)
$$

where $W \in L\left(A_{I} \otimes A_{O} \otimes B_{I} \otimes B_{O}\right)$ is a process matrix.

Quantum correlations with no causal order (2011)
O. Oreshkov, F. Costa, C. Brukner

[^2]
Process matrix

$W \in L\left(A_{I} \otimes A_{O} \otimes B_{I} \otimes B_{O}\right)$ is a process matrix iff

$$
\begin{align*}
W & \geq 0 ; \\
A_{l} A_{O} W & =A_{l} A_{O} B_{O} W ; \\
B_{l} B_{O} W & =B_{l} B_{O} A_{O} W ; \tag{1}\\
W+{ }_{A_{O} B_{O}} W & =B_{O} W+{ }_{A_{O}} W ; \\
\operatorname{tr}(W) & =d_{A_{O}} d_{B_{O}} .
\end{align*}
$$

Device-dependent certification non-causal separability

Given a set of probabilities $p(a b \mid x y)$ and instruments $\bar{A}_{a \mid x}, \bar{B}_{b \mid y}$

$$
p(a b \mid x y)=\operatorname{tr}\left(W \bar{A}_{a \mid x} \otimes \bar{B}_{b \mid y}\right)
$$

Causal witness:
Witnessing causal nonseparability (2015)
M. Araújo, C. Branciard, F. Costa, A. Feix, C. Giarmatzi, Č. Brukner

Device-independent certification non-causal separability

Given a set of probabilities $p(a b \mid x y)$

$$
p(a b \mid x y)=\operatorname{tr}\left(W A_{a \mid x} \otimes B_{b \mid y}\right)
$$

Causal games:
The simplest causal inequalities and their violation C. Branciard, M. Araújo, A. Feix, F. Costa, Č. Brukner

Semi-device-dependent certification non-causal separability

How about semi-device independent?

Semi-device-dependent certification non-causal separability

Given a set of probabilities $p(a b \mid x y)$ and instruments $\bar{B}_{b \mid y}$ does there exist a causally separable process matrix $W^{\text {sep }}$ and instruments $A_{a \mid X}$

$$
p(a b \mid x y)=\operatorname{tr}\left(W A_{a \mid x} \otimes \bar{B}_{b \mid y}\right)
$$

Semi-device-dependent certification non-causal separability

Device-dependent	
Given quantities	Variables
$\left\{p^{Q}(a b \mid x y)\right\}$	W
$\left\{\bar{A}_{a \mid x}\right\},\left\{\bar{B}_{b \mid y}\right\}$	

Device-independent

Given quantities	Variables
$\left\{p^{Q}(a b \mid x y)\right\}$	$d_{A_{1}}, d_{A_{O}}, d_{B_{1}}, d_{B_{O}}$
	$\left\{A_{a \mid x}\right\},\left\{B_{b \mid y}\right\}$
	W

Semi-device-independent	
Given quantities	Variables
$\left\{p^{Q}(a b \mid x y)\right\}$	$d_{A_{l}}, d_{A_{O}}$
$\left\{\bar{B}_{b \mid y}\right\}$	$\left\{A_{a \mid x}\right\}$
	W

Useful tools

- Process assemblage:

$$
w_{a \mid x}:=\operatorname{tr}\left(W A_{a \mid x} \otimes I\right)
$$

Useful tools

- Process assemblage:

$$
w_{a \mid x}:=\operatorname{tr}\left(W A_{a \mid x} \otimes I\right)
$$

- Causally separable process assemblage:

$$
w_{a \mid x}^{\text {sep }}:=\operatorname{tr}\left(W^{\text {sep }} A_{a \mid x} \otimes I\right)
$$

Useful tools

- Process assemblage:

$$
w_{a \mid x}:=\operatorname{tr}\left(W A_{a \mid x} \otimes I\right)
$$

- Causally separable process assemblage:

$$
w_{a \mid x}^{\text {sep }}:=\operatorname{tr}\left(W^{\text {sep }} A_{a \mid x} \otimes I\right)
$$

- Abstract causally separable assemblage: $w_{a \mid x}^{A<B}$ such that $\operatorname{tr}\left(w_{a \mid x}^{A<B} B_{b \mid y}\right)=p^{A<B}(a b \mid x y)$

Useful tools

- Process assemblage:

$$
w_{a \mid x}:=\operatorname{tr}\left(W A_{a \mid x} \otimes I\right)
$$

- Causally separable process assemblage:

$$
w_{a \mid x}^{\text {sep }}:=\operatorname{tr}\left(W^{\text {sep }} A_{a \mid x} \otimes I\right)
$$

- Abstract causally separable assemblage: $w_{a \mid x}^{A<B}$ such that $\operatorname{tr}\left(w_{a \mid x}^{A<B} B_{b \mid y}\right)=p^{A<B}(a b \mid x y)$
- Abstract causally separable assemblage:

$$
w_{a \mid x}^{\text {asep }}:=q w_{a \mid x}^{A<B}+(1-q) w_{a \mid x}^{B<A}
$$

Main result 1

Theorem
All abstract causally separable process assemblage can be realised by causally separable process matrix. That is, $\exists W^{\text {sep }},\left\{A_{\mathrm{a} \mid \times}\right\}$ such that

$$
w_{\mathrm{a} \mid x}^{\mathrm{asep}}=\operatorname{tr}\left(W^{\text {sep }} A_{\mathrm{a} \mid x} \otimes I\right)=w_{\mathrm{a} \mid X}^{\text {sep }} .
$$

Moreover, deciding if a process assemblage is causally separable can be phrased as a semi-definite program.

"No analogue to Schrödinger's theorem"

Theorem
There exists an abstract assemblage with no process matrix realisation.

$$
w_{a \mid x} \neq \operatorname{tr}\left(W_{a \mid x}^{A} \otimes I\right)
$$

General statements about the process matrix?

How about statements for the process matrix?

Main result 2

Theorem
Let W be a bipartite process matrix. If $W^{T_{B}}$ is causally separable, W is semi-device independent causally separable

Main result 2

Theorem (This work)
Let W be a bipartite process matrix. If $W^{T_{B}}$ is causally separable, W is semi-device independent causally separable.

Theorem (Feix et al)
Let W be a bipartite process matrix. If $W^{T_{B}}$ is causally separable, W is device independent causally separable.

Causally nonseparable processes admitting a causal model (2016)
A. Feix, M. Araújo, Č. Brukner

Too abstract. . .

OK, nice. But. . . how do we "realise" such indefinite causal order processes ??

Quantum Switch

Quantum computations without definite causal structure (2013)
G. Chiribella, G. M. D'Ariano, P.Perinotti, B. Valiron

Quantum Switch

Quantum computations without definite causal structure (2013)
G. Chiribella, G. M. D'Ariano, P.Perinotti, B. Valiron

Tripartite process matrices

- The quantum switch a process with indefinite causal order.

Tripartite process matrices

- The quantum switch a process with indefinite causal order.
- But cannot lead to device-independent certification...

Witnessing causal nonseparability (2015)
M. Araújo, C. Branciard, F. Costa, A. Feix, C. Giarmatzi, Č. Brukner

Tripartite process matrices

Main result 3

Theorem
In the UUT scenario, the quantum switch is semi-device-independent causally separable.

Main result 3

Theorem (This work)
In the UUT scenario, the quantum switch is
semi-device-independent causally separable.
Theorem (Araújo et al)
The quantum switch is device-independent causally separable.

Witnessing causal nonseparability (2015)
M. Araújo, C. Branciard, F. Costa, A. Feix, C. Giarmatzi, Č. Brukner

Tripartite process matrices

- How about other scenarios?

Tripartite process matrices

- How about other scenarios?
- Noisy Switch:

$$
W_{\text {switch }}(r)=(1-r) W_{\text {switch }}+r \frac{l}{4}
$$

Critical visibility r indefinite causal order

$\begin{gathered} \text { TTT } \\ r^{*}=0.6118 \end{gathered}$	
Noncausal	
UTT	TTU
$r^{*} \geq 0.1802$	$r^{*} \geq 0.5687$
Noncausal	Noncausal
UUT	TUU
$r^{*}=0$	$r^{*} \geq 0.1621$
Causal	Noncausal
UUU	
$r^{*}=0$	
Causal	

Applications

Analysing real experiments

Analysing previous experiments

Unitary Operations \hat{A}, \hat{B}

Indefinite Causal Order in a Quantum Switch, PRL (2018) K. Goswami, C. Giarmatzi, M. Kewming, F. Costa, C. Branciard, J. Romero, A. G. White

Analysing previous experiments

With these unitaries, indefinite causal order can be certified without assuming Charlie performs σ_{X}
(Robustness: $r=0.1989$)

Analysing previous experiments

Experimental Verification of an Indefinite Causal Order, Sci. Adv. (2017) G. Rubino, L. A. Rozema, A. Feix, M. Araújo, J. M. Zeuner, L. M. P., Č. Brukner, P. Walther

Analysing previous experiments

With these instruments and states, indefinite causal order can be certified without assuming Charlie performs σ_{X} (Robustness: $r=0.2300$)

Final remarks

- Simple framework to analyse indefinite causal order based on trusted instruments

Final remarks

- Simple framework to analyse indefinite causal order based on trusted instruments
- Certifying indefinite causal order with less hypothesis

Final remarks

- Simple framework to analyse indefinite causal order based on trusted instruments
- Certifying indefinite causal order with less hypothesis
- Better understanding of the quantum switch

Final remarks

- Simple framework to analyse indefinite causal order based on trusted instruments
- Certifying indefinite causal order with less hypothesis
- Better understanding of the quantum switch
- Question: Can we have other interpretations? (maybe related to EPR-steering?)

Final remarks

- Simple framework to analyse indefinite causal order based on trusted instruments
- Certifying indefinite causal order with less hypothesis
- Better understanding of the quantum switch
- Question: Can we have other interpretations? (maybe related to EPR-steering?)
- Question: Are these ideas/methods useful for some computational/communication task?

Thank you!

[^0]: ${ }^{1}$ And their trivial extensions.

[^1]: ${ }^{2}$ And their trivial extensions.

[^2]: ${ }^{3}$ And their trivial extensions.

