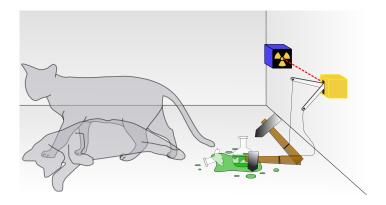
Genuine *n*-wise Measurement Incompatibility and Device Independent Certificates of Incompatibility

Marco Túlio Quintino

August 31, 2017

In collaboration with: Daniel Cavalcanti (ICFO), Costantino Budroni (Vienna), Adán Cabello (Sevilla) and Flavien Hirsch (GAP), Nicolas Brunner (GAP), Joseph Bowles (ICFO) PRA (2016) + arXiv (2017)

Quantum Mechanics



States and Measurements

$\rho_{AB} \neq \int \pi(\lambda) \rho_A^\lambda \otimes \rho_B^\lambda \, \mathrm{d}\lambda \qquad \Delta x \; \Delta p \geq \hbar/2$

Erwin Schrödinger

Werner Heisenberg

Born's Rule

$p(ab|xy) = tr(\rho_{AB}A_{a|x} \otimes B_{b|y})$

Max Born

Measurement Incompatibility

$\Delta x \ \Delta p \geq \hbar/2$

Compatible Measurements

Quantum observables:

$$E = E^{\dagger}, \qquad F = F^{\dagger}$$

Compatible Measurements

Quantum observables:

$$E = E^{\dagger}, \qquad F = F^{\dagger}$$

Compatibility is captured by commutation:

$$EF - FE = 0 \iff Compatible$$

Compatible Measurements

Quantum observables:

$$E = E^{\dagger}, \qquad F = F^{\dagger}$$

Compatibility is captured by commutation:

$$EF - FE = 0 \iff Compatible$$

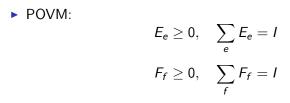
Joint Measurability

More general measurements

$$E_e \ge 0, \quad \sum_e E_e = I$$

 $F_f \ge 0, \quad \sum_f F_f = I$

More general measurements



Commutation of the POVM elements?

Joint Measurability

{*E_e*} and {*F_f*} are JM if there exists a third measurement {*G_{ef}*}, such that

$$E_e = \sum_f G_{ef}, \quad F_f = \sum_e G_{ef}$$

Joint Measurability

{E_e} and {F_f} are JM if there exists a third measurement {G_{ef}}, such that

$$E_e = \sum_f G_{ef}, \quad F_f = \sum_e G_{ef}$$

• By measuring $\{G_{ef}\}$ we get the output e and f

Pauli Measurements

$\sigma_{Z}: \{ |0\rangle\langle 0|, |1\rangle\langle 1| \} \quad \sigma_{X}: \{ |+\rangle\langle +|, |-\rangle\langle -| \}$

$$\sigma_{Z,\eta}:\left\{\eta \left|0\right\rangle\langle 0\right|+(1-\eta)\frac{l}{2}\,;\qquad \eta \left|1\right\rangle\langle 1\right|+(1-\eta)\frac{l}{2}\right\}$$

$$\sigma_{Z,\eta} : \left\{ \eta |0\rangle \langle 0| + (1-\eta)\frac{l}{2} ; \qquad \eta |1\rangle \langle 1| + (1-\eta)\frac{l}{2} \right\}$$

$$\sigma_{X,\eta} : \left\{ \eta |+\rangle \langle +| + (1-\eta)\frac{l}{2} ; \qquad \eta |-\rangle \langle -| + (1-\eta)\frac{l}{2} \right\}$$

$$\sigma_{Z,\eta} : \left\{ \eta | 0 \rangle \langle 0 | + (1 - \eta) \frac{l}{2} ; \qquad \eta | 1 \rangle \langle 1 | + (1 - \eta) \frac{l}{2} \right\}$$

$$\sigma_{X,\eta} : \left\{ \eta | + \rangle \langle + | + (1 - \eta) \frac{l}{2} ; \qquad \eta | - \rangle \langle - | + (1 - \eta) \frac{l}{2} \right\}$$

$$\eta \leq \frac{1}{\sqrt{2}} \iff \text{Joint Measurability}$$

P. Busch. Phys. Rev. D (1986)

Hollow Triangle

$$\sigma_{Z,\eta} : \left\{ \eta | 0 \rangle \langle 0 | + (1-\eta) \frac{l}{2} ; \qquad \eta | 1 \rangle \langle 1 | + (1-\eta) \frac{l}{2} \right\}$$

$$\sigma_{X,\eta} : \left\{ \eta | + \rangle \langle + | + (1-\eta) \frac{l}{2} ; \qquad \eta | - \rangle \langle - | + (1-\eta) \frac{l}{2} \right\}$$

$$\sigma_{Y,\eta} : \left\{ \eta | Y + \rangle \langle Y + | + (1-\eta) \frac{l}{2} ; \qquad \eta | Y - \rangle \langle Y - | + (1-\eta) \frac{l}{2} \right\}$$

$$\eta \leq rac{1}{\sqrt{2}} \iff$$
 Pairwise Measurability

Hollow Triangle

$$\sigma_{Z,\eta} : \left\{ \eta | 0 \rangle \langle 0 | + (1-\eta) \frac{l}{2} ; \qquad \eta | 1 \rangle \langle 1 | + (1-\eta) \frac{l}{2} \right\}$$

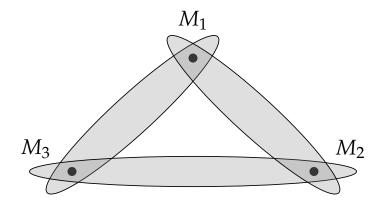
$$\sigma_{X,\eta} : \left\{ \eta | + \rangle \langle + | + (1-\eta) \frac{l}{2} ; \qquad \eta | - \rangle \langle - | + (1-\eta) \frac{l}{2} \right\}$$

$$\sigma_{Y,\eta} : \left\{ \eta | Y + \rangle \langle Y + | + (1-\eta) \frac{l}{2} ; \qquad \eta | Y - \rangle \langle Y - | + (1-\eta) \frac{l}{2} \right\}$$

$$\eta \leq rac{1}{\sqrt{2}} \iff$$
 Pairwise Measurability $\eta \leq rac{1}{\sqrt{3}} \iff$ Triplewise Measurability

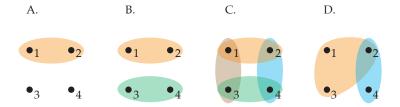
T. Heinosaari, D. Reitzner, P. Stano: Foundations of Physics (2008)

Hollow Triangle Measurements

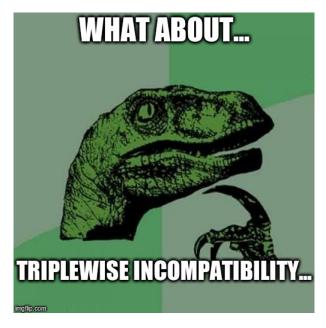


T. Heinosaari, D. Reitzner, P. Stano: Foundations of Physics (2008)

General Measurement Compatibility



First Question



$$\sigma_{Z,\eta} : \left\{ \eta | 0 \rangle \langle 0 | + (1-\eta) \frac{l}{2} ; \qquad \eta | 1 \rangle \langle 1 | + (1-\eta) \frac{l}{2} \right\}$$

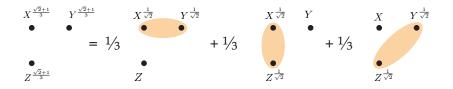
$$\sigma_{X,\eta} : \left\{ \eta | + \rangle \langle + | + (1-\eta) \frac{l}{2} ; \qquad \eta | - \rangle \langle - | + (1-\eta) \frac{l}{2} \right\}$$

$$\sigma_{Y,\eta} : \left\{ \eta | Y + \rangle \langle Y + | + (1-\eta) \frac{l}{2} ; \qquad \eta | Y - \rangle \langle Y - | + (1-\eta) \frac{l}{2} \right\}$$

$$\eta \leq \frac{1}{\sqrt{2}} \iff$$
 Pairwise Measurability
 $\eta \leq \frac{1}{\sqrt{3}} \iff$ Triplewise Measurability

Example

Example



Non-genuine triplewise compatible measurements:

$$A_{a|x} = p_{12}J^{12}_{a|x} + p_{23}J^{23}_{a|x} + p_{13}J^{13}_{a|x}$$

Hollow Triangle

$$\sigma_{Z,\eta} : \left\{ \eta | 0 \rangle \langle 0 | + (1-\eta) \frac{l}{2} ; \qquad \eta | 1 \rangle \langle 1 | + (1-\eta) \frac{l}{2} \right\}$$

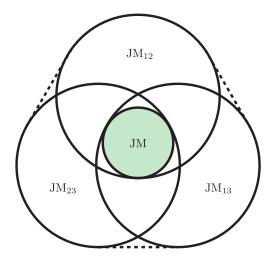
$$\sigma_{X,\eta} : \left\{ \eta | + \rangle \langle + | + (1-\eta) \frac{l}{2} ; \qquad \eta | - \rangle \langle - | + (1-\eta) \frac{l}{2} \right\}$$

$$\sigma_{Y,\eta} : \left\{ \eta | Y + \rangle \langle Y + | + (1-\eta) \frac{l}{2} ; \qquad \eta | Y - \rangle \langle Y - | + (1-\eta) \frac{l}{2} \right\}$$

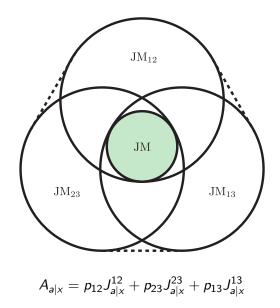
$$\eta \leq rac{1}{\sqrt{2}} pprox 0.707 \iff$$
 Pairwise Measurability
 $\eta \leq rac{1}{\sqrt{3}} pprox 0.577 \iff$ Triplewise Measurability

 $\eta > rac{\sqrt{2}+1}{3} pprox 0.805 \iff$ Genuine Triplewise incompatibility

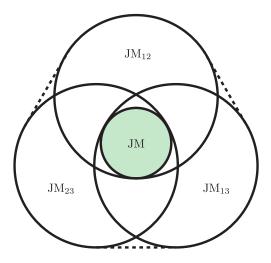
Geometrical Interpretation



Geometrical Interpretation



Geometrical Interpretation



(All these sets admits an SDP characterisation)

$$M_i := M_{0|i} - M_{1_i}$$

tr($\sigma_X M_1 + \sigma_Y M_2 + \sigma_Z M_3$)

$$M_i := M_{0|i} - M_{1_i}$$

tr($\sigma_X M_1 + \sigma_Y M_2 + \sigma_Z M_3$) $\stackrel{\mathsf{G}}{\leq} 6$

$$M_{i} := M_{0|i} - M_{1_{i}}$$

tr($\sigma_{X}M_{1} + \sigma_{Y}M_{2} + \sigma_{Z}M_{3}$) $\stackrel{G}{\leq} 6$
tr($\sigma_{X}M_{1} + \sigma_{Y}M_{2} + \sigma_{Z}M_{3}$) $\stackrel{JM}{\leq} \frac{6}{\sqrt{3}} \approx 2.34$

$$M_{i} := M_{0|i} - M_{1i}$$

$$\operatorname{tr}(\sigma_{X}M_{1} + \sigma_{Y}M_{2} + \sigma_{Z}M_{3}) \stackrel{G}{\leq} 6$$

$$\operatorname{tr}(\sigma_{X}M_{1} + \sigma_{Y}M_{2} + \sigma_{Z}M_{3}) \stackrel{JM}{\leq} \frac{6}{\sqrt{3}} \approx 2.34$$

$$\operatorname{tr}(\sigma_{X}M_{1} + \sigma_{Y}M_{2} + \sigma_{Z}M_{3}) \stackrel{2JM}{\leq} \frac{6}{\sqrt{2}} \approx 4.24$$

$$\begin{split} M_i &:= M_{0|i} - M_{1i} \\ \operatorname{tr}(\sigma_X M_1 + \sigma_Y M_2 + \sigma_Z M_3) \stackrel{G}{\leq} 6 \\ \operatorname{tr}(\sigma_X M_1 + \sigma_Y M_2 + \sigma_Z M_3) \stackrel{JM}{\leq} \frac{6}{\sqrt{3}} \approx 2.34 \\ \operatorname{tr}(\sigma_X M_1 + \sigma_Y M_2 + \sigma_Z M_3) \stackrel{2JM}{\leq} \frac{6}{\sqrt{2}} \approx 4.24 \\ \operatorname{tr}(\sigma_X M_1 + \sigma_Y M_2 + \sigma_Z M_3) \stackrel{3JM}{\leq} 2(\sqrt{2} + 1) \approx 4.82 \end{split}$$

Genuine N-wise incompatibility

Genuine N-wise incompatibility

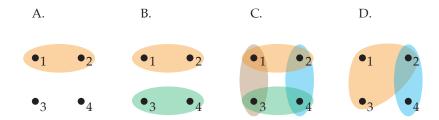
Genuine N-wise incompatibility

Genuine N-wise incompatibility

Genuine N-wise incompatibility

Genuine N-wise incompatibility ...

and more!



General Definition

Definition

Given a set of compatibility $C = \{C_1, C_2, \ldots, C_N\}$, a set measurements $\{A_{a|x}\}$ is genuine *C*-incompatible when it cannot be written as convex combinations of measurements that respect the compatibility C_1, C_2, \ldots , and C_N .

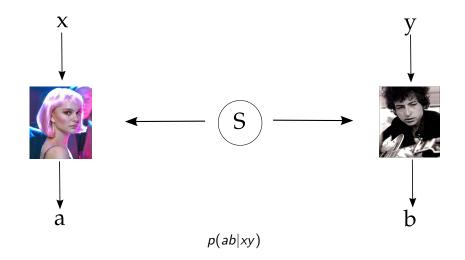
General Definition

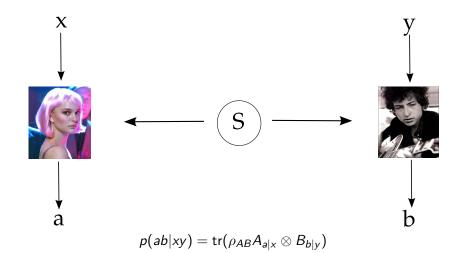
Definition

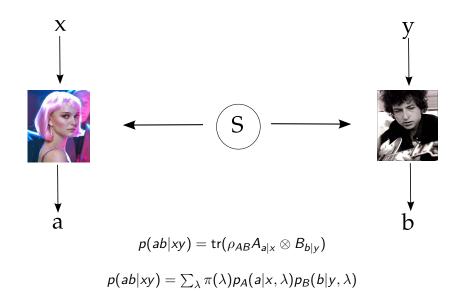
Given a set of compatibility $C = \{C_1, C_2, \ldots, C_N\}$, a set measurements $\{A_{a|x}\}$ is genuine C-incompatible when it cannot be written as convex combinations of measurements that respect the compatibility C_1, C_2, \ldots , and C_N . More specifically, let $\{J_{a|x}^{C_i}\}$, be a set of of measurements respecting the compatibility structure C_i . The set $\{A_{a|x}\}$ is not genuine C-incompatible if it can be written as

$$A_{a|x} = \sum_{i} p_i J_{a|x}^{C_i} \tag{1}$$

for some probabilities p_i .







Compatible measurements \implies Bell Locality

${\sf Measurement}\ {\sf Compatibility}\ \Longrightarrow\ {\sf Bell}\ {\sf Locality}$

Bell Nonlocality \implies Measurement Incompatibility

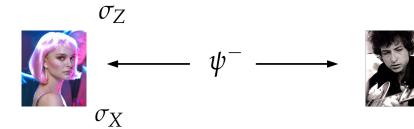
${\sf Measurement}\ {\sf Compatibility}\ \Longrightarrow\ {\sf Bell}\ {\sf Locality}$

Bell Nonlocality \implies Measurement Incompatibility

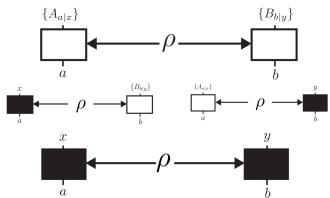
Device independent certification of Measurement Incompatibility!

$$\textit{CHSH} = \langle \textit{A}_1\textit{B}_1 \rangle + \langle \textit{A}_1\textit{B}_2 \rangle + \langle \textit{A}_2\textit{B}_1 \rangle - \langle \textit{A}_2\textit{B}_2 \rangle \overset{\textit{LHV}}{\leq} 2$$

EPR Steering



EPR Steering



Device Independent Certification

Can the you "certificate" the incompatibility of all measurements?

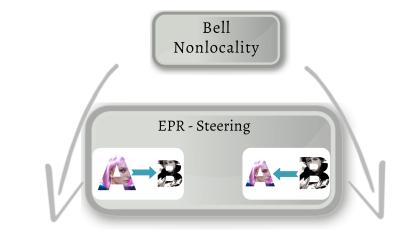
Device Independent Certification

Can the you "certificate" the incompatibility of all measurements?

Which measurements are "useful" for Bell/EPR nonlocality?

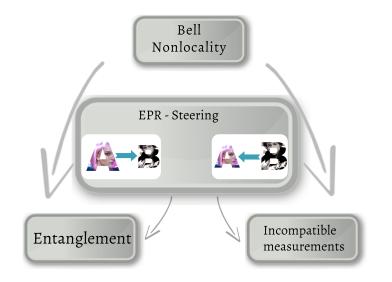
Diagram of concepts

Bell Locality Requires Entanglement and Incompatible Measurements

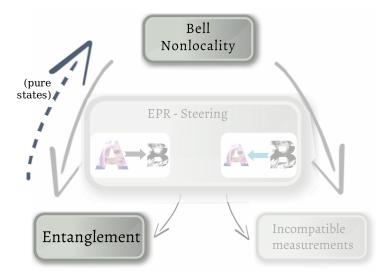


Entanglement Incompatible measurements

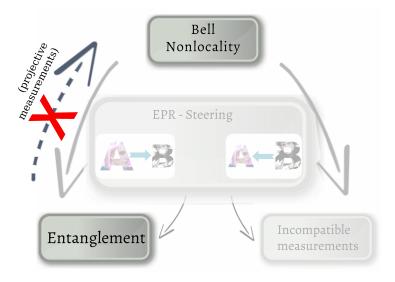
EPR-Steering Requires Entanglement and Incompatible Measurements



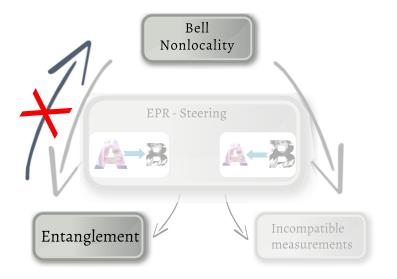
Pure states: N. Gisin (1991)



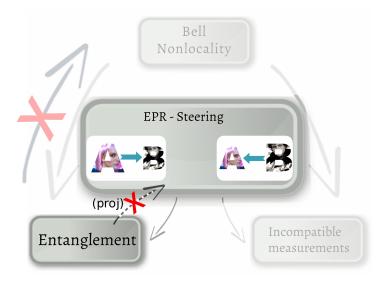
Werner States (1989)



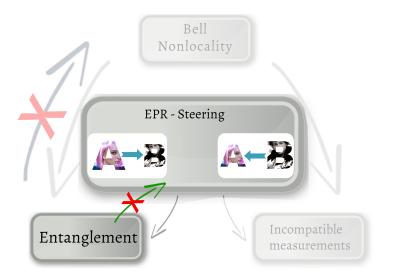
Barrett's Model (2003)



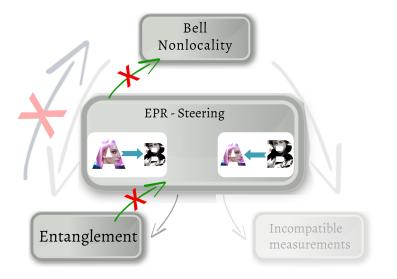
Wiseman et al (2007)



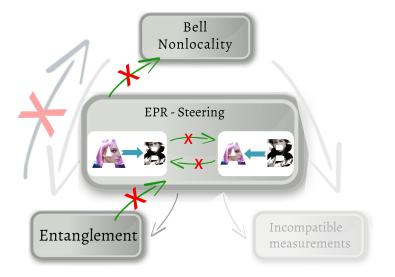
Quintino et al (2015)



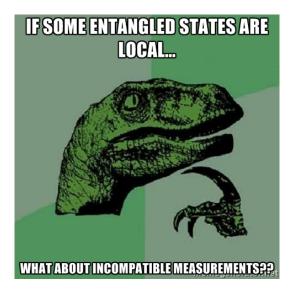
Quintino et al (2015)



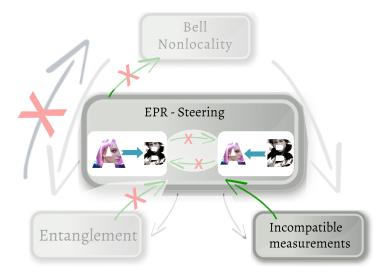
Quintino et al (2015)+ Bowles, Quintino, et al 2014



Local Incompatible Measurements??

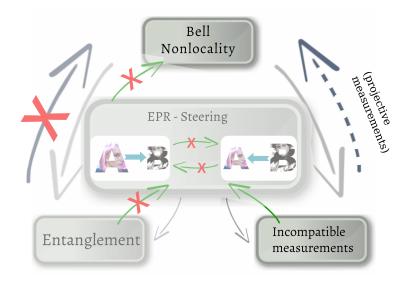


Quintino et al/ Uola et al (2014)



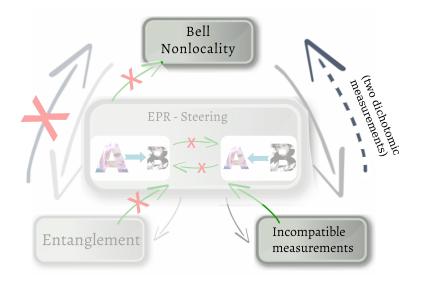
Projective Measurements

L.A. Khalfin, B.S. Tsirelson (1985)

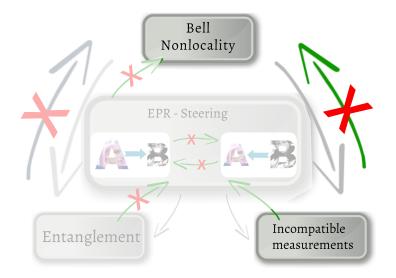


Two dichotomic measurements

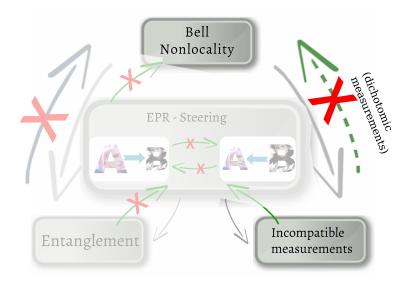
M. M. Wolf, D. Perez-Garcia, C. Fernandez (2009)



Our contribution



Our contribution



Incompatible measurements and Bell Nonlocality

Main Result

There exists a set of non Jointly Measurable measurements that can never lead to Bell nonlocality when the other part is restricted to dichotomic measurements.

PHYSICAL REVIEW A 93, 052115 (2016)

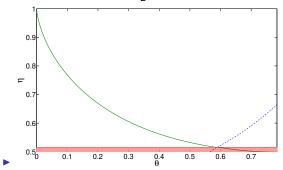
Marco Túlio Quintino, Joseph Bowles, Flavien Hirsch, and Nicolas Brunner

 \blacktriangleright Consider the set of all η white noise protective measurements

- \blacktriangleright Consider the set of all η white noise protective measurements
- They are incompatible iff $\eta > 1/2$

- \blacktriangleright Consider the set of all η white noise protective measurements
- They are incompatible iff $\eta > 1/2$
- ▶ We find a local hidden variable model for all possible states $\eta\psi_{\theta} + (1 \eta)\psi_{A} \otimes \frac{l}{2}$

- \blacktriangleright Consider the set of all η white noise protective measurements
- They are incompatible iff $\eta > 1/2$
- ► We find a local hidden variable model for all possible states $\eta\psi_{\theta} + (1 \eta)\psi_{A} \otimes \frac{l}{2}$



The general case

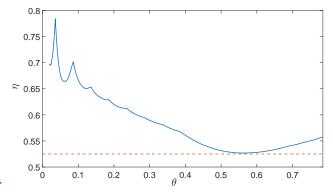
▶ We can drop the two-outcome assumption

The general case

- We can drop the two-outcome assumption
- Similar idea, but now we use SDP techniques to construct many POVM local models (Hirsch, Quintino, *et al* (2015)) and do convex combinations with many local models.

The general case

- We can drop the two-outcome assumption
- Similar idea, but now we use SDP techniques to construct many POVM local models (Hirsch, Quintino, *et al* (2015)) and do convex combinations with many local models.



Independent (but very related) work

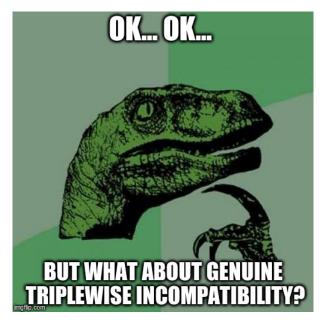
A set of incompatible but Bell local measuremets was also presented at:

Measurement incompatibility does not give rise to Bell violation in general

Bene Erika, Tamás Vértesi

(arXiv:1705.10069)

(Similar proof techniques were used)



p(ab|xy) is Non-signalling when

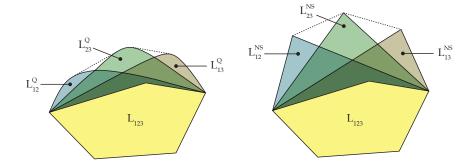
$$\sum_{b} p(ab|xy) = \sum_{b} p(ab|xy') \forall a, x, y, y'$$
$$\sum_{a} p(ab|xy) = \sum_{b} ap(ab|x'y) \forall b, x, x', y'$$

$p(ab|xy) \in L_{12}^{NS}$ is Non-signalling AND p(ab|xy) is Bell-local when x = 1 and x = 2

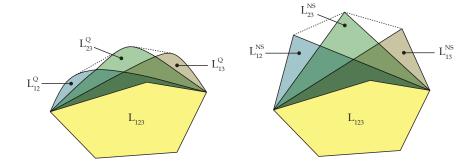
 $p(ab|xy) \in L_{12}^{NS}$ is Non-signalling AND p(ab|xy) is Bell-local when x = 1 and x = 2

 $p(ab|xy) \in L_{12}^Q$ is Quantum AND p(ab|xy)is Bell-local when x = 1 and x = 2

Geometry



Geometry



NPA hierarchy (SDP)

Linear Programming

Known Bell Inequalities

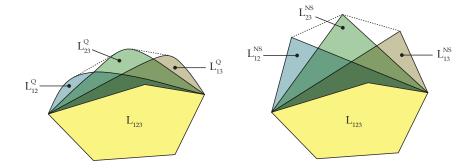
•	L	NS	NPA2	QUBIT	2L	3L
<i>I</i> ₃₃₂₂	0	1	0.251	0.25	0.5	0.75

Known Bell Inequalities

•	L	NS	NPA2	QUBIT	2L	3L
<i>I</i> ₃₃₂₂	0	1	0.251	0.25	0.5	0.75

With $I_{3422}(2)$ and I_{3522} we can certify pairwise incompatibility in all pairs, but not genuine triplewise incompatibility.

Genuine 3-input NL



Full Facet Enumeration of 3L is possible!

Genuine 3-input NL on both sides

$$-p(10|00) - p(00|01) - p(00|10) - p(00|11)$$

 $-p(10|12) - p(01|20) - p(01|21) + p(00|22) \stackrel{3L}{\leq} 0$

Three Input Nonlocality

$$\begin{aligned} -p(10|00) - p(00|01) - p(00|10) - p(00|11) \\ -p(10|12) - p(01|20) - p(01|21) + p(00|22) \stackrel{3L}{\leq} 0 \end{aligned}$$

With Qutrits, one can obtain 0.34 > 0

Semi-device independent certification

Semi-device independent?

Semi-device independent certification

Genuine 3-input steering!

Rich structure measurement Incompatibility with n > 2 measurements

- Rich structure measurement Incompatibility with n > 2 measurements
- Device independent certifications

- Rich structure measurement Incompatibility with n > 2 measurements
- Device independent certifications
- Different notions of device independent certifications

- Rich structure measurement Incompatibility with n > 2 measurements
- Device independent certifications
- Different notions of device independent certifications
- Can be tackled by known/simple mathematical tools

- Rich structure measurement Incompatibility with n > 2 measurements
- Device independent certifications
- Different notions of device independent certifications
- Can be tackled by known/simple mathematical tools
- Non-trivial Bell-nonlocality breaking channels!

 Information protocols exploiting genuine *n*-wise incompatibility/nonlocality/etc

Future

- Information protocols exploiting genuine *n*-wise incompatibility/nonlocality/etc
- Genuine triplewise incompatible but not genuine triplewise Bell-Nonlocal

Future

- Information protocols exploiting genuine *n*-wise incompatibility/nonlocality/etc
- Genuine triplewise incompatible but not genuine triplewise Bell-Nonlocal
- In quantum mechanics, we have genuine *n*-wise incompatible measurements ∀n ∈ N

Future

- Information protocols exploiting genuine *n*-wise incompatibility/nonlocality/etc
- Genuine triplewise incompatible but not genuine triplewise Bell-Nonlocal
- In quantum mechanics, we have genuine *n*-wise incompatible measurements ∀n ∈ N
- Obtain a "proper" computer assisted proof for local incompatible measurements

Thank you!

