Genuine n－wise Measurement Incompatibility and
 Device Independent Certificates of Incompatibility

Marco Túlio Quintino

August 31， 2017

In collaboration with：
Daniel Cavalcanti（ICFO），Costantino Budroni（Vienna），Adán Cabello（Sevilla） and
Flavien Hirsch（GAP），Nicolas Brunner（GAP），Joseph Bowles（ICFO）
PRA（2016）+ arXiv（2017）

Quantum Mechanics

States and Measurements

$$
\rho_{A B} \neq \int \pi(\lambda) \rho_{A}^{\lambda} \otimes \rho_{B}^{\lambda} \mathrm{d} \lambda
$$

$$
\Delta x \Delta p \geq \hbar / 2
$$

Erwin Schrödinger

Werner Heisenberg

Born's Rule

$p(a b \mid x y)=\operatorname{tr}\left(\rho_{A B} A_{a \mid x} \otimes B_{b \mid y}\right)$

Max Born

Measurement Incompatibility

$\Delta x \Delta p \geq \hbar / 2$

Compatible Measurements

- Quantum observables:

$$
E=E^{\dagger}, \quad F=F^{\dagger}
$$

Compatible Measurements

- Quantum observables:

$$
E=E^{\dagger}, \quad F=F^{\dagger}
$$

- Compatibility is captured by commutation:

$$
E F-F E=0 \Longleftrightarrow \text { Compatible }
$$

Compatible Measurements

- Quantum observables:

$$
E=E^{\dagger}, \quad F=F^{\dagger}
$$

- Compatibility is captured by commutation:

$$
E F-F E=0 \Longleftrightarrow \text { Compatible }
$$

- Joint Measurability

More general measurements

- POVM:

$$
\begin{aligned}
& E_{e} \geq 0, \quad \sum_{e} E_{e}=1 \\
& F_{f} \geq 0, \quad \sum_{f} F_{f}=1
\end{aligned}
$$

More general measurements

- POVM:

$$
\begin{aligned}
& E_{e} \geq 0, \quad \sum_{e} E_{e}=I \\
& F_{f} \geq 0, \quad \sum_{f} F_{f}=I
\end{aligned}
$$

- Commutation of the POVM elements?

Joint Measurability

- $\left\{E_{e}\right\}$ and $\left\{F_{f}\right\}$ are JM if there exists a third measurement $\left\{G_{e f}\right\}$, such that

$$
E_{e}=\sum_{f} G_{e f}, \quad F_{f}=\sum_{e} G_{e f}
$$

Joint Measurability

- $\left\{E_{e}\right\}$ and $\left\{F_{f}\right\}$ are JM if there exists a third measurement $\left\{G_{e f}\right\}$, such that

$$
E_{e}=\sum_{f} G_{e f}, \quad F_{f}=\sum_{e} G_{e f}
$$

- By measuring $\left\{G_{e f}\right\}$ we get the output e and f

Pauli Measurements

$$
\sigma_{Z}:\{|0\rangle\langle 0|,|1\rangle\langle 1|\} \quad \sigma_{X}:\{|+\rangle\langle+|,|-\rangle\langle-|\}
$$

Noise Pauli Measurements

$$
\sigma_{z, \eta}:\left\{\eta|0\rangle\langle 0|+(1-\eta) \frac{l}{2} ; \quad \eta|1\rangle\langle 1|+(1-\eta) \frac{l}{2}\right\}
$$

Noise Pauli Measurements

$$
\begin{aligned}
\sigma_{Z, \eta}:\left\{\eta|0\rangle\langle 0|+(1-\eta) \frac{l}{2} ;\right. & \left.\eta|1\rangle\langle 1|+(1-\eta) \frac{l}{2}\right\} \\
\sigma_{X, \eta}:\left\{\eta|+\rangle\langle+|+(1-\eta) \frac{l}{2} ;\right. & \left.\eta|-\rangle\langle-|+(1-\eta) \frac{l}{2}\right\}
\end{aligned}
$$

Noise Pauli Measurements

$$
\begin{gathered}
\sigma_{z, \eta}:\left\{\eta|0\rangle\langle 0|+(1-\eta) \frac{l}{2} ; \quad \eta|1\rangle\langle 1|+(1-\eta) \frac{l}{2}\right\} \\
\sigma_{X, \eta}:\left\{\eta|+\rangle\langle+|+(1-\eta) \frac{l}{2} ; \quad \eta|-\rangle\langle-|+(1-\eta) \frac{l}{2}\right\} \\
\eta \leq \frac{1}{\sqrt{2}} \Longleftrightarrow \text { Joint Measurability }
\end{gathered}
$$

P. Busch. Phys. Rev. D (1986)

Hollow Triangle

$$
\begin{gathered}
\sigma_{Z, \eta}:\left\{\eta|0\rangle\langle 0|+(1-\eta) \frac{l}{2} ; \quad \eta|1\rangle\langle 1|+(1-\eta) \frac{I}{2}\right\} \\
\sigma_{X, \eta}:\left\{\eta|+\rangle\langle+|+(1-\eta) \frac{l}{2} ; \quad \eta|-\rangle\langle-|+(1-\eta) \frac{l}{2}\right\} \\
\sigma_{Y, \eta}:\left\{\eta|Y+\rangle\langle Y+|+(1-\eta) \frac{I}{2} ; \quad \eta|Y-\rangle\langle Y-|+(1-\eta) \frac{I}{2}\right\} \\
\quad \eta \leq \frac{1}{\sqrt{2}} \Longleftrightarrow \text { Pairwise Measurability }
\end{gathered}
$$

Hollow Triangle

$$
\begin{gathered}
\sigma_{Z, \eta}:\left\{\eta|0\rangle\langle 0|+(1-\eta) \frac{l}{2} ; \quad \eta|1\rangle\langle 1|+(1-\eta) \frac{l}{2}\right\} \\
\sigma_{X, \eta}:\left\{\eta|+\rangle\langle+|+(1-\eta) \frac{l}{2} ; \quad \eta|-\rangle\langle-|+(1-\eta) \frac{l}{2}\right\} \\
\sigma_{Y, \eta}:\left\{\eta|Y+\rangle\langle Y+|+(1-\eta) \frac{l}{2} ; \quad \eta|Y-\rangle\langle Y-|+(1-\eta) \frac{l}{2}\right\} \\
\eta \leq \frac{1}{\sqrt{2}} \Longleftrightarrow \text { Pairwise Measurability } \\
\eta \leq \frac{1}{\sqrt{3}} \Longleftrightarrow \text { Triplewise Measurability }
\end{gathered}
$$

T. Heinosaari, D. Reitzner, P. Stano: Foundations of Physics (2008)

Hollow Triangle Measurements

T. Heinosaari, D. Reitzner, P. Stano: Foundations of Physics (2008)

General Measurement Compatibility

```
PHYSICAL REVIEW A
covering aiomic, molecular and optical physics and quantum information
IIghlights Recent Accepted Authors Referees Search Press About A
```

Quantum realization of arbitrary joint measurability structures
Ravi Kunjwal, Chris Heunen, and Tobias Fritz
Phys. Rev. A 89, 052126 - Published 21 May 2014
A.
B.
C.
D.

First Question

Noise Pauli Measurements

$$
\begin{gathered}
\sigma_{Z, \eta}:\left\{\eta|0\rangle\langle 0|+(1-\eta) \frac{l}{2} ; \quad \eta|1\rangle\langle 1|+(1-\eta) \frac{l}{2}\right\} \\
\sigma_{X, \eta}:\left\{\eta|+\rangle\langle+|+(1-\eta) \frac{l}{2} ; \quad \eta|-\rangle\langle-|+(1-\eta) \frac{l}{2}\right\} \\
\sigma_{Y, \eta}:\left\{\eta|Y+\rangle\langle Y+|+(1-\eta) \frac{l}{2} ; \quad \eta|Y-\rangle\langle Y-|+(1-\eta) \frac{l}{2}\right\} \\
\eta \leq \frac{1}{\sqrt{2}} \Longleftrightarrow \text { Pairwise Measurability } \\
\eta \leq \frac{1}{\sqrt{3}} \Longleftrightarrow \text { Triplewise Measurability }
\end{gathered}
$$

Example

Example

Non-genuine triplewise compatible measurements:

$$
A_{a \mid x}=p_{12} J_{a \mid x}^{12}+p_{23} J_{a \mid x}^{23}+p_{13} J_{a \mid x}^{13}
$$

Hollow Triangle

$$
\begin{gathered}
\sigma_{Z, \eta}:\left\{\eta|0\rangle\langle 0|+(1-\eta) \frac{l}{2} ; \quad \eta|1\rangle\langle 1|+(1-\eta) \frac{l}{2}\right\} \\
\sigma_{X, \eta}:\left\{\eta|+\rangle\langle+|+(1-\eta) \frac{l}{2} ; \quad \eta|-\rangle\langle-|+(1-\eta) \frac{l}{2}\right\} \\
\sigma_{Y, \eta}:\left\{\eta|Y+\rangle\langle Y+|+(1-\eta) \frac{l}{2} ; \quad \eta|Y-\rangle\langle Y-|+(1-\eta) \frac{l}{2}\right\} \\
\eta \leq \frac{1}{\sqrt{2}} \approx 0.707 \Longleftrightarrow \text { Pairwise Measurability } \\
\eta \leq \frac{1}{\sqrt{3}} \approx 0.577 \Longleftrightarrow \text { Triplewise Measurability } \\
\eta>\frac{\sqrt{2}+1}{3} \approx 0.805 \Longleftrightarrow \text { Genuine Triplewise incompatibility }
\end{gathered}
$$

Geometrical Interpretation

Geometrical Interpretation

$$
A_{a \mid x}=p_{12} J_{\mathbf{a} \mid x}^{12}+p_{23} J_{\mathbf{a} \mid x}^{23}+p_{13} J_{\mathbf{a} \mid x}^{13}
$$

Geometrical Interpretation

(All these sets admits an SDP characterisation)

Incompatibility Witness

$$
\begin{aligned}
& M_{i}:=M_{0 \mid i}-M_{1 i} \\
& \operatorname{tr}\left(\sigma_{X} M_{1}+\sigma_{Y} M_{2}+\sigma_{Z} M_{3}\right)
\end{aligned}
$$

Incompatibility Witness

$$
\begin{aligned}
& M_{i}:=M_{0 \mid i}-M_{1_{i}} \\
& \operatorname{tr}\left(\sigma_{X} M_{1}+\sigma_{Y} M_{2}+\sigma_{Z} M_{3}\right) \stackrel{G}{\leq} 6
\end{aligned}
$$

Incompatibility Witness

$$
\begin{aligned}
& M_{i}:=M_{0 \mid i}-M_{1_{i}} \\
& \operatorname{tr}\left(\sigma_{X} M_{1}+\sigma_{Y} M_{2}+\sigma_{Z} M_{3}\right) \stackrel{G}{\leq} 6 \\
& \operatorname{tr}\left(\sigma_{X} M_{1}+\sigma_{Y} M_{2}+\sigma_{Z} M_{3}\right) \stackrel{J M}{\leq} \frac{6}{\sqrt{3}} \approx 2.34
\end{aligned}
$$

Incompatibility Witness

$$
\begin{aligned}
& M_{i}:=M_{0 \mid i}-M_{1_{i}} \\
& \operatorname{tr}\left(\sigma_{X} M_{1}+\sigma_{Y} M_{2}+\sigma_{Z} M_{3}\right) \stackrel{G}{\leq} 6 \\
& \operatorname{tr}\left(\sigma_{X} M_{1}+\sigma_{Y} M_{2}+\sigma_{Z} M_{3}\right) \stackrel{J M}{\leq} \frac{6}{\sqrt{3}} \approx 2.34 \\
& \operatorname{tr}\left(\sigma_{X} M_{1}+\sigma_{Y} M_{2}+\sigma_{Z} M_{3}\right) \stackrel{2 J M}{\leq} \frac{6}{\sqrt{2}} \approx 4.24
\end{aligned}
$$

Incompatibility Witness

$$
\begin{aligned}
& M_{i}:=M_{0 \mid i}-M_{1_{i}} \\
& \operatorname{tr}\left(\sigma_{X} M_{1}+\sigma_{Y} M_{2}+\sigma_{Z} M_{3}\right) \stackrel{G}{\leq} 6 \\
& \operatorname{tr}\left(\sigma_{X} M_{1}+\sigma_{Y} M_{2}+\sigma_{Z} M_{3}\right) \stackrel{J M}{\leq} \frac{6}{\sqrt{3}} \approx 2.34 \\
& \operatorname{tr}\left(\sigma_{X} M_{1}+\sigma_{Y} M_{2}+\sigma_{Z} M_{3}\right) \stackrel{2 J M}{\leq} \frac{6}{\sqrt{2}} \approx 4.24 \\
& \operatorname{tr}\left(\sigma_{X} M_{1}+\sigma_{Y} M_{2}+\sigma_{Z} M_{3}\right) \stackrel{3 J M}{\leq} 2(\sqrt{2}+1) \approx 4.82
\end{aligned}
$$

Genuine N -wise incompatibility

Genuine N -wise incompatibility

Genuine N -wise incompatibility

Genuine N-wise incompatibility . . .

Genuine N -wise incompatibility

Genuine N-wise incompatibility ... and more!
A.
B.
C.
D.

General Definition

Definition

Given a set of compatibility $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{N}\right\}$, a set measurements $\left\{A_{a \mid x}\right\}$ is genuine \mathcal{C}-incompatible when it cannot be written as convex combinations of measurements that respect the compatibility C_{1}, C_{2}, \ldots, and C_{N}.

General Definition

Definition

Given a set of compatibility $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{N}\right\}$, a set measurements $\left\{A_{a \mid x}\right\}$ is genuine \mathcal{C}-incompatible when it cannot be written as convex combinations of measurements that respect the compatibility C_{1}, C_{2}, \ldots, and C_{N}.
More specifically, let $\left\{J_{a \mid x}^{C_{i}}\right\}$, be a set of of measurements respecting the compatibility structure C_{i}. The set $\left\{A_{a \mid x}\right\}$ is not genuine \mathcal{C}-incompatible if it can be written as

$$
\begin{equation*}
A_{a \mid x}=\sum_{i} p_{i} J_{a \mid x}^{C_{i}} \tag{1}
\end{equation*}
$$

for some probabilities p_{i}.

Bell Nonlocality

Bell Nonlocality

Bell Nonlocality

$$
\begin{gathered}
p(a b \mid x y)=\operatorname{tr}\left(\rho_{A B} A_{a \mid x} \otimes B_{b \mid y}\right) \\
p(a b \mid x y)=\sum_{\lambda} \pi(\lambda) p_{A}(a \mid x, \lambda) p_{B}(b \mid y, \lambda)
\end{gathered}
$$

Bell Nonlocality

Compatible measurements \Longrightarrow Bell Locality

Bell Nonlocality

Measurement Compatibility \Longrightarrow Bell Locality

Bell Nonlocality \Longrightarrow Measurement Incompatibility

Bell Nonlocality

Measurement Compatibility \Longrightarrow Bell Locality

Bell Nonlocality \Longrightarrow Measurement Incompatibility

Device independent certification of Measurement Incompatibility!

CHSH

$$
\mathrm{CHSH}=\left\langle A_{1} B_{1}\right\rangle+\left\langle A_{1} B_{2}\right\rangle+\left\langle A_{2} B_{1}\right\rangle-\left\langle A_{2} B_{2}\right\rangle \stackrel{\text { LHV }}{\leq} 2
$$

EPR Steering

σ_{Z}

σ_{X}

EPR Steering

Device Independent Certification

Can the you "certificate" the incompatibility of all measurements?

Device Independent Certification

Can the you "certificate" the incompatibility of all measurements?

Which measurements are "useful" for Bell/EPR nonlocality?

Diagram of concepts

Bell
 Nonlocality

EPR - Steering

Entanglement

Incompatible measurements

Bell Locality Requires Entanglement and Incompatible Measurements

Bell
 Nonlocality

EPR - Steering

Entanglement

Incompatible measurements

EPR-Steering Requires Entanglement and Incompatible Measurements

Pure states: N. Gisin (1991)

Werner States (1989)

Barrett's Model (2003)

Wiseman et al (2007)

Quintino et al (2015)

Quintino et al (2015)

Quintino et al (2015)+ Bowles, Quintino, et al 2014

Local Incompatible Measurements??

Quintino et al/ Uola et al (2014)

Projective Measurements

L.A. Khalfin, B.S. Tsirelson (1985)

Two dichotomic measurements

M. M. Wolf, D. Perez-Garcia, C. Fernandez (2009)

Our contribution

Our contribution

Incompatible measurements and Bell Nonlocality

Main Result

There exists a set of non Jointly Measurable measurements that can never lead to Bell nonlocality when the other part is restricted to dichotomic measurements.

```
PHYSICAL REVIEW A 93,052115 (2016)
    %
```

Incompatible quantum measurements admitting a local-hidden-variable model

Methods

- Consider the set of all η white noise protective measurements

Methods

- Consider the set of all η white noise protective measurements
- They are incompatible iff $\eta>1 / 2$

Methods

- Consider the set of all η white noise protective measurements
- They are incompatible iff $\eta>1 / 2$
- We find a local hidden variable model for all possible states $\eta \psi_{\theta}+(1-\eta) \psi_{A} \otimes \frac{1}{2}$

Methods

- Consider the set of all η white noise protective measurements
- They are incompatible iff $\eta>1 / 2$
- We find a local hidden variable model for all possible states $\eta \psi_{\theta}+(1-\eta) \psi_{A} \otimes \frac{1}{2}$

The general case

- We can drop the two-outcome assumption

The general case

- We can drop the two-outcome assumption
- Similar idea, but now we use SDP techniques to construct many POVM local models (Hirsch, Quintino, et al (2015)) and do convex combinations with many local models.

The general case

- We can drop the two-outcome assumption
- Similar idea, but now we use SDP techniques to construct many POVM local models (Hirsch, Quintino, et al (2015)) and do convex combinations with many local models.

Independent (but very related) work

A set of incompatible but Bell local measuremets was also presented at:
Measurement incompatibility does not give rise to Bell violation in general
Bene Erika, Tamás Vértesi
(arXiv:1705.10069)
(Similar proof techniques were used)

Device Independent Certification

Device Independent Certification

$p(a b \mid x y)$ is Non-signalling when

$$
\begin{gathered}
\sum_{b} p(a b \mid x y)=\sum_{b} p\left(a b \mid x y^{\prime}\right) \forall a, x, y, y^{\prime} \\
\sum_{a} p(a b \mid x y)=\sum_{b} a p\left(a b \mid x^{\prime} y\right) \forall b, x, x^{\prime}, y^{\prime}
\end{gathered}
$$

Device Independent Certification

$$
\begin{gathered}
p(a b \mid x y) \in L_{12}^{N S} \text { is Non-signalling AND } \\
p(a b \mid x y) \text { is Bell-local when } x=1 \text { and } x=2
\end{gathered}
$$

Device Independent Certification

$$
\begin{aligned}
& p(a b \mid x y) \in L_{12}^{N S} \text { is Non-signalling AND } \\
& p(a b \mid x y) \text { is Bell-local when } x=1 \text { and } x=2 \\
& p(a b \mid x y) \in L_{12}^{Q} \text { is Quantum AND } \\
& p(a b \mid \times y) \text { is Bell-local when } x=1 \text { and } x=2
\end{aligned}
$$

Geometry

Geometry

NPA hierarchy (SDP)

Known Bell Inequalities

\bullet	L	NS	NPA2	QUBIT	2 L	3 L
I_{3322}	0	1	0.251	0.25	0.5	0.75

Known Bell Inequalities

\bullet	L	NS	NPA 2	QUBIT	2 L	3 L
I_{3322}	0	1	0.251	0.25	0.5	0.75

With $I_{3422}(2)$ and I_{3522} we can certify pairwise incompatibility in all pairs, but not genuine triplewise incompatibility.

Genuine 3-input NL

Full Facet Enumeration of $3 L$ is possible!

Genuine 3-input NL on both sides

$$
\begin{aligned}
& -p(10 \mid 00)-p(00 \mid 01)-p(00 \mid 10)-p(00 \mid 11) \\
& -p(10 \mid 12)-p(01 \mid 20)-p(01 \mid 21)+p(00 \mid 22) \leq 0
\end{aligned}
$$

Three Input Nonlocality

$$
\begin{aligned}
& -p(10 \mid 00)-p(00 \mid 01)-p(00 \mid 10)-p(00 \mid 11) \\
& -p(10 \mid 12)-p(01 \mid 20)-p(01 \mid 21)+p(00 \mid 22) \stackrel{3 L}{\leq} 0
\end{aligned}
$$

With Qutrits, one can obtain $0.34>0$

Semi-device independent certification

Semi-device independent?

Semi-device independent certification

Genuine 3-input steering!

Main Points

- Rich structure measurement Incompatibility with $n>2$ measurements

Main Points

- Rich structure measurement Incompatibility with $n>2$ measurements
- Device independent certifications

Main Points

- Rich structure measurement Incompatibility with $n>2$ measurements
- Device independent certifications
- Different notions of device independent certifications

Main Points

- Rich structure measurement Incompatibility with $n>2$ measurements
- Device independent certifications
- Different notions of device independent certifications
- Can be tackled by known/simple mathematical tools

Main Points

- Rich structure measurement Incompatibility with $n>2$ measurements
- Device independent certifications
- Different notions of device independent certifications
- Can be tackled by known/simple mathematical tools
- Non-trivial Bell-nonlocality breaking channels!

Future

- Information protocols exploiting genuine n-wise incompatibility/nonlocality/etc

Future

- Information protocols exploiting genuine n-wise incompatibility/nonlocality/etc
- Genuine triplewise incompatible but not genuine triplewise Bell-Nonlocal

Future

- Information protocols exploiting genuine n-wise incompatibility/nonlocality/etc
- Genuine triplewise incompatible but not genuine triplewise Bell-Nonlocal
- In quantum mechanics, we have genuine n-wise incompatible measurements $\forall n \in \mathbb{N}$

Future

- Information protocols exploiting genuine n-wise incompatibility/nonlocality/etc
- Genuine triplewise incompatible but not genuine triplewise Bell-Nonlocal
- In quantum mechanics, we have genuine n-wise incompatible measurements $\forall n \in \mathbb{N}$
- Obtain a "proper" computer assisted proof for local incompatible measurements

Thank you!

