Entangled States Admitting a Local Hidden Variable Model For Sequential Measurements

Marco Túlio Quintino

Université de Genève

31st March 2016

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Joint with: J. Bowles, F. Hirsch, N. Brunner (In preparation)

Entanglement Vs. Nonlocality

Vs.

Entanglement

$\rho_{AB} \neq \int \pi(\lambda) \rho_A^\lambda \otimes \rho_B^\lambda \, \mathrm{d}\lambda$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Bell Scenario

・ロト・日本・日本・日本・日本・日本

Bell Scenario

Locality

Common cause:

$$p(ab|xy\lambda) = p(a|x\lambda)p(b|y\lambda)$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Locality

Common cause:

$$p(ab|xy\lambda) = p(a|x\lambda)p(b|y\lambda)$$

Locality:

$$p(ab|A_XB_y) = \int \pi(\lambda)p(a|x\lambda)p(b|y\lambda) d\lambda$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Bell Scenario with sequential measurements

Picture: Nonlocality in sequential correlation scenarios R. Gallego, L. Würflinger, R. Chaves, A. Acín and M. Navascués New J. Phys. 16 (2014) 033037

Bell Scenario with sequential measurements

Picture: Nonlocality in sequential correlation scenarios R. Gallego, L. Würflinger, R. Chaves, A. Acín and M. Navascués New J. Phys. 16 (2014) 033037

Sequential measurements

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Quantum Experiments

Quantum Experiments

Quantum probabilities:

$$p(ab|xy) = \operatorname{tr}\left(\rho_{AB}A_{a}^{x}\otimes B_{b}^{y}\right)$$

Quantum Experiments

$$p(ab|xy) = tr(\rho_{AB}A^x_a \otimes B^y_b)$$

"Quantum theory is nonlocal" (Bell 64)

$$\operatorname{tr}\left(\psi_{AB}A_{a}^{x}\otimes B_{b}^{y}\right)\neq\int\pi(\lambda)p(a|x\lambda)p(b|y\lambda)\,\mathrm{d}\lambda$$

${\sf Separable}/{\sf Entanglement}$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$\mathsf{Local}/\mathsf{Nonlocal}$

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ≧ ○ � � �

Bell inequalities

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Bell inequalities

 $CHSH = A_0 \otimes B_0 + A_0 \otimes B_1 + A_1 \otimes B_0 - A_1 \otimes B_1$

$\mathsf{Separable} \stackrel{?}{=} \mathsf{Local}$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$\mathsf{Entanglement} \iff \mathsf{Nonlocality}$

Do all entangled states violate a Bell Inequality?

Entanglement $\stackrel{?}{\iff}$ Nonlocality

- Do all entangled states violate a Bell Inequality?
- Pure states: Yes (Gisin 91, Popescu and Rohrlich 92)

Entanglement $\stackrel{?}{\iff}$ Nonlocality

- Do all entangled states violate a Bell Inequality?
- Pure states: Yes (Gisin 91, Popescu and Rohrlich 92)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Mixed states: ???

PHYSICAL REVIEW A

VOLUME 40, NUMBER 8

OCTOBER 15, 1989

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model

Reinhard F. Werner* Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland (Received 1 May 1989)

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $\int \pi(\lambda) p_A(a|\lambda) p_B(b|\lambda) \, \mathrm{d}\lambda = \mathrm{tr}(\rho_{AB} M_A^a \otimes M_B^b)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

End of story?

► Entanglement ≠ Locality!

End of story?

- ► Entanglement ≠ Locality!
- ► Well...

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

And if we consider POVMs?

And if we consider POVMs?

(Barrett, 02)

POVM locality

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Single measurement

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ● ● ● ● ●

Sequential measurements

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Picture: Nonlocality in sequential correlation scenarios R. Gallego, L. Würflinger, R. Chaves, A. Acín and M. Navascués New J. Phys. 16 (2014) 033037

Sequential measurements

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Sequential measurements

(日) (四) (日) (日) (日)

S. Popescu, Hidden Nonlocality (1995)

No additional loophole

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Step 1 - Filtering

No additional loophole

イロト 不得 トイヨト イヨト

3

- Step 1 Filtering
- Step 2 Usual Bell test

No additional loophole

イロト 不得 トイヨト イヨト

3

- ► Step 1 Filtering
- Step 2 Usual Bell test

The (S)LOCC interpretation

Hidden Nonlocality

(Popescu, 95)

Genuine Hidden Nonlocality?

Genuine Hidden Nonlocality!!

Genuine hidden quantum nonlocality F. Hirsch, M.T. Quintino, J. Bowles, N. Brunner Phys. Rev. Lett. 111, 160402 (2013)

• Hidden nonlocal \iff entangled ?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Entanglement + Local pre-processing = Nonlocality??

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Entanglement + Local pre-processing = Nonlocality??
- ► No!

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Theorem

For some visibility V the two qubit Werner state

$$W=V\psi^-+(1-V)rac{l}{4}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem

For some visibility V the two qubit Werner state

$$W = V\psi^- + (1-V)\frac{1}{4}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is entangled and does not have hidden nonlocality. PROJ: V $\leq 1/2$ POVMs: V ≤ 0.4

No sequential NL for single choice in the first round

Theorem

For some visibility V the two qubit Werner state

$$W = V\psi^- + (1-V)\frac{1}{4}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- No sequential NL for single choice in the first round
- NL cannot be activated by local filtering

Theorem

For some visibility V the two qubit Werner state

$$W=V\psi^{-}+(1-V)rac{I}{4}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- No sequential NL for single choice in the first round
- NL cannot be activated by local filtering
- NL cannot be activated by SLOCC

Theorem

For some visibility V the two qubit Werner state

$$W = V\psi^- + (1-V)\frac{1}{4}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- No sequential NL for single choice in the first round
- NL cannot be activated by local filtering
- NL cannot be activated by SLOCC
- NL cannot be activated by LOCC

Theorem

For some visibility V the two qubit Werner state

$$W = V\psi^- + (1-V)rac{l}{4}$$

is entangled and does not have hidden nonlocality. PROJ: V $\leq 1/2$ POVMs: V ≤ 0.4

- No sequential NL for single choice in the first round
- NL cannot be activated by local filtering
- NL cannot be activated by SLOCC
- NL cannot be activated by LOCC

"Hey Marco, write something in the board!"

Step 1 - Equivalent resources for NL on entangled states:

No sequential NL for single choice in the first round

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- NL cannot be activated by local filtering
- NL cannot be activated by SLOCC
- NL cannot be activated by LOCC

Asymptotic violation of Bell inequalities and distillability Ll. Masanes Phys. Rev. Lett. 97, 050503 (2006)

Step 2 - General results for local models

 Steering local models "respect" quantum mechanics in characterised part

Inequivalence of entanglement, steering, and Bell nonlocality for general measurements MT Quintino, T Vértesi, D Cavalcanti, R Augusiak, M Demianowicz, A Acín, N Brunner Physical Review A, 92, 3, 2015

Step 2 - General results for local models

- Steering local models "respect" quantum mechanics in characterised part
- Sequential measurements and local operations are covered by the model

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Inequivalence of entanglement, steering, and Bell nonlocality for general measurements MT Quintino, T Vértesi, D Cavalcanti, R Augusiak, M Demianowicz, A Acín, N Brunner Physical Review A, 92, 3, 2015 Step 3 - Understading the Werner state after local filtering on Alice's side:

$$egin{aligned} &V\psi^- + (1-V)rac{l}{4} \mapsto V \ket{\psi_ heta} raket{\psi_ heta} + (1-V)\psi_A \otimes rac{l}{2}, \ &\ket{\psi_ heta} \coloneqq \cos heta \ket{00} + \sin heta \ket{11}, \quad \psi_A \coloneqq \operatorname{tr}_B \psi_ heta \end{aligned}$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Step 3 - Understading the Werner state after local filtering on Alice's side:

$$egin{aligned} &V\psi^- + (1-V)rac{l}{4}\mapsto V\ket{\psi_ heta}raket{\psi_ heta} + (1-V)\psi_A\otimesrac{l}{2}, \ &\ket{\psi_ heta}\coloneqq \cos heta\ket{00} + \sin heta\ket{11}, \quad \psi_A\coloneqq \mathrm{tr}_B\,\psi_ heta \end{aligned}$$

Step 4 - Steering model: We "just" need a steering model for

$$ho = |\psi_{ heta}
angle\langle\psi_{ heta}| + (1-V)\psi_A\otimesrac{I}{2}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

from Alice to Bob! ($\forall \theta$ and a fixed V > 1/3)

Projective measurements and $V \leq 1/2$

Sufficient criterion for guaranteeing that a two-qubit state is unsteerable

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Joseph Bowles, Flavien Hirsch, Marco Túlio Quintino, and Nicolas Brunner Phys. Rev. A **93**, 022121 – Published 26 February 2016

General POVMs and $V \leq 0.4$

Algorithmic construction of local hidden variable models for entangled quantum states

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Flavien Hirsch, Marco Túlio Quintino, Tamás Vértesi, Matthew F. Pusey, Nicolas Brunner

(Submitted on 1 Dec 2015)

 Sequential measurements can reveal the nonlocality of local entangled states

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

- Sequential measurements can reveal the nonlocality of local entangled states
- Sometimes two rounds with a single choice of measurement for the first round is enough

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Sequential measurements can reveal the nonlocality of local entangled states
- Sometimes two rounds with a single choice of measurement for the first round is enough

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sometimes not

- Sequential measurements can reveal the nonlocality of local entangled states
- Sometimes two rounds with a single choice of measurement for the first round is enough
- Sometimes not
- Machinery developed for EPR-steering can be very useful for Bell nonlocality

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Future directions

More choices of measurements on the first round

Future directions

- More choices of measurements on the first round
- Are all entangled states nonlocal in the sequential measurement framework?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ
Thank you!

