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Joint Measurability

∆x ∆p ≥ ~/2



Entangled States

ρAB 6=
∫
π(λ)ρλA ⊗ ρλB dλ



Nonlocality
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Compatible measurements lead to classical statistics
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The converse question

  

Incompatible Measurements

Nonlocality

 Entanglement

? ?



Pure states (N. Gisin, Phys. Lett. A 154, 201 (1991))
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Werner States (1989)
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Nonlocality and Quantum measurements
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Compatible Measurements

I Quantum observables:

E = E †, F = F †

I Compatibility is captured by commutation:

EF − FE = 0 ⇐⇒ Compatible

I Jointly Measurability
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Joint Measurability

I {Ee} and {Ff } are JM if there exists a third measurement
{Gef }, such that

Ee =
∑

b
Gef , Ff =

∑
a

Gef

I By measuring {Gef } we get the output e and f



Joint Measurability

I {Ee} and {Ff } are JM if there exists a third measurement
{Gef }, such that

Ee =
∑

b
Gef , Ff =

∑
a

Gef

I By measuring {Gef } we get the output e and f



Pauli Measurements

σZ : {|0〉〈0| , |1〉〈1|} σX : {|+〉〈+| , |−〉〈−|}
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η ≤ 1√
3

=⇒ Triplewise Measurability



Hollow triangle measurements

M1

M3 M2

Figure: A “Hollow Triangle” measurement
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EPR steering
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How to fool Bob
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EPR steering
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This cannot be simulated by classical mixtures of qubits.



EPR steering

  

p=1/2

p=1/2

p=1/2

p=1/2

Incompatible measurements + Entangled state –> EPR steering



Assemblage

Bob’s state after Aa|x

ρa|x =
trA(ρABAa|x ⊗ I)

p(a|x)



Assemblage

Bob’s system is completely described by an assemblage:

σa|x = trA(ρABAa|x ⊗ I)

ρa|x =
σa|x

tr(σa|x )



Unsteerable Assemblages

Classical mixture of single part quantum states:

ρa|x =
∑
λ

π(λ|a, x)ρλ



Unsteerable Assemblages
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ρa|x =
∑
λ

π(λ|a, x)ρλ

Bayes Rule:
π(λ|a, x) = pA(a|x , λ)π(λ)
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Unsteerable Assemblages

When an assemblage is unsteerable?

ρa|x =
∑
λ

π(λ|a, x)ρλ

Bayes Rule:
π(λ|a, x) = pA(a|x , λ)π(λ)

p(a|x)
And we have:

ρa|x =
∑
λ

pA(a|x , λ)π(λ)
p(a|x) ρλ



Unsteerable Assemblages

σa|x =
∑
λ

π(λ)pA(a|x , λ)ρλ



Separable states are EPR local

I Only entangled states can lead to steerable assemblages

I Entanglement certification (Even when Bob does not trust
Alice)
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Werner states (1989)
Some entangled states are EPR local!
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Local Incompatible Measurements??



All incompatible measurements can lead to steering!

No Joint Measurability ⇐⇒ Useful for EPR Steering



Our contribution
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The precise result

Theorem
Let {Aa|x} be a set of incompatible measurements. There exists a
quantum state ρAB such that the assemblage
σa|x = trA(Aa|x ⊗ IρAB) is steerable.
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The precise result

Theorem
Let {Aa|x} be a set of incompatible measurements. If Alice
measures {Aa|x} on her part of a pure entangled state, the
resulting assemblage is steerable.
Any number of measurements, any number of outputs, any
quantum dimension.



New interpretations for Quantum Joint Measurability

We can now interpret joint measurability in terms of EPR
correlations.
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Applications
I Imagine that Alice wants to measure ALL projective

measurements at the same time.

I Some white noise is accepted (i.e. ηM + (1− η)I )
I How small should η be?
I Precisely 1/2!
I Werner’s model (1989) + “Steering, Entanglement,

Nonlocality, and the Einstein-Podolsky-Rosen Paradox”: H.
M. Wiseman et al (2006)

I More (tight) unsteerable states:

ρUNS = 1
2Φθ + 1

2
I
2 ⊗ ρB,θ

I η ≤ 5/12 =⇒ all POVMs can be measured
(Barrett 2002 + Quintino et al 2015 + this work -> Pusey
2015)
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I Alice and Bob share a two qubit Werner state

I What is the probability of Bob having an steering assemblage
when Alice perform random measurements?

I If she performs two uniformly random projective ones:
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Applications

p(η) =
√

2η2 − 1
η4

0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Busch, P. (1986) Unsharp reality and joint measurements for spin
observables. Phys. Rev. D 33)
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Bell Nonlocality

p(ab|xy)



Bell Inequalities

Bell Nonlocality can be witnessed by Bell Inequalities

CHSH = 〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉 ≤ 2



Bell Inequalities

Bell Nonlocality can be witnessed by Bell Inequalities

CHSH = 〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉 ≤ 2

〈AxBy 〉 := p(a = b|xy)− p(a 6= b|xy)
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Projective Measurements
L.A. Khalfin, B.S. Tsirelson, 1985
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Two dichotomic measurements
M. M. Wolf, D. Perez-Garcia, C. Fernandez, 2009
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Incompatible measurements and Bell Nonlocality

I There may exist incompatible Bell local measurements . . .

I Evidence 1: Maximally entangled state =⇒ incompatible
Bell local measurements

I Evidence 2: Hollow triangle measurements + full-correlation
type cannot show bell nonlocality
(〈AxBy 〉 := p(a = b|xy)− p(a 6= b|xy))
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Incompatible measurements and Bell Nonlocality

Conjecture
There exists a set of non Jointly Measurable measurements that
can never lead to Bell inequality violation.
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I Conceptually: How to interpret JM in terms of EPR steering
(vice versa!)

I Applications: Some theorems for JM can be translated to
Nonlocality (vice versa!)
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I Can all incompatible measurements lead to Bell nonlocality?
I If our conjecture is correct, is there a simple concept that

captures Bell Nonlocality for quantum measurements?
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After finishing

“Joint Measurability of generalized measurements implies
classicality”
R. Uola, T. Moroder, O. Gühne
Phys. Rev. Lett. 113, 160403



Thank you!
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