Joint measurability, EPR steering, and Bell nonlocality

Marco Túlio Quintino

August 11, 2015

UNIVERSITÉ DE GENĖVE

FNSNF

Fonds national suisse
Schweizerischer Nationalfonds
Fondo nazionale svizzero
Swiss National Science Foundation

Phys. Rev. Lett. 113, 160402; Joint with: T. Vértesi, N. Brunner

Joint Measurability

$\Delta x \Delta p \geq \hbar / 2$

Entangled States

$\rho_{A B} \neq \int \pi(\lambda) \rho_{A}^{\lambda} \otimes \rho_{B}^{\lambda} \mathrm{d} \lambda$

Nonlocality

Relations between the concepts

Nonlocality

Separable states are local

Entanglement
Incompatible Measurements

Compatible measurements lead to classical statistics

The converse question

Pure states (N. Gisin, Phys. Lett. A 154, 201 (1991))

Entanglement
Incompatible Measurements

Werner States (1989)

Nonlocality and Quantum measurements

Compatible Measurements

- Quantum observables:

$$
E=E^{\dagger}, \quad F=F^{\dagger}
$$

Compatible Measurements

- Quantum observables:

$$
E=E^{\dagger}, \quad F=F^{\dagger}
$$

- Compatibility is captured by commutation:

$$
E F-F E=0 \Longleftrightarrow \text { Compatible }
$$

Compatible Measurements

- Quantum observables:

$$
E=E^{\dagger}, \quad F=F^{\dagger}
$$

- Compatibility is captured by commutation:

$$
E F-F E=0 \Longleftrightarrow \text { Compatible }
$$

- Jointly Measurability

More general measurements

- POVM:

$$
\begin{aligned}
& E_{e} \geq 0, \quad \sum_{a} E_{e}=1 \\
& F_{f} \geq 0, \quad \sum_{b} F_{f}=1
\end{aligned}
$$

More general measurements

- POVM:

$$
\begin{aligned}
& E_{e} \geq 0, \quad \sum_{a} E_{e}=1 \\
& F_{f} \geq 0, \quad \sum_{b} F_{f}=1
\end{aligned}
$$

- Commutation of the POVM elements?

Joint Measurability

- $\left\{E_{e}\right\}$ and $\left\{F_{f}\right\}$ are JM if there exists a third measurement $\left\{G_{e f}\right\}$, such that

$$
E_{e}=\sum_{b} G_{e f}, \quad F_{f}=\sum_{a} G_{e f}
$$

Joint Measurability

- $\left\{E_{e}\right\}$ and $\left\{F_{f}\right\}$ are JM if there exists a third measurement $\left\{G_{e f}\right\}$, such that

$$
E_{e}=\sum_{b} G_{e f}, \quad F_{f}=\sum_{a} G_{e f}
$$

- By measuring $\left\{G_{e f}\right\}$ we get the output e and f

Pauli Measurements

$$
\sigma_{Z}:\{|0\rangle\langle 0|,|1\rangle\langle 1|\} \quad \sigma_{X}:\{|+\rangle\langle+|,|-\rangle\langle-|\}
$$

Noise Pauli Measurements

$$
\sigma_{z, \eta}:\left\{\eta|0\rangle\langle 0|+(1-\eta) \frac{l}{2} ; \quad \eta|1\rangle\langle 1|+(1-\eta) \frac{l}{2}\right\}
$$

Noise Pauli Measurements

$$
\begin{aligned}
\sigma_{Z, \eta}:\left\{\eta|0\rangle\langle 0|+(1-\eta) \frac{l}{2} ;\right. & \left.\eta|1\rangle\langle 1|+(1-\eta) \frac{l}{2}\right\} \\
\sigma_{X, \eta}:\left\{\eta|+\rangle\langle+|+(1-\eta) \frac{l}{2} ;\right. & \left.\eta|-\rangle\langle-|+(1-\eta) \frac{l}{2}\right\}
\end{aligned}
$$

Noise Pauli Measurements

$$
\begin{gathered}
\sigma_{z, \eta}:\left\{\eta|0\rangle\langle 0|+(1-\eta) \frac{l}{2} ; \quad \eta|1\rangle\langle 1|+(1-\eta) \frac{l}{2}\right\} \\
\sigma_{X, \eta}:\left\{\eta|+\rangle\langle+|+(1-\eta) \frac{l}{2} ; \quad \eta|-\rangle\langle-|+(1-\eta) \frac{l}{2}\right\} \\
\eta \leq \frac{1}{\sqrt{2}} \Longrightarrow \text { Joint Measurability }
\end{gathered}
$$

Hollow Triangle

$$
\begin{gathered}
\sigma_{Z, \eta}:\left\{\eta|0\rangle\langle 0|+(1-\eta) \frac{l}{2} ; \quad \eta|1\rangle\langle 1|+(1-\eta) \frac{l}{2}\right\} \\
\sigma_{X, \eta}:\left\{\eta|+\rangle\langle+|+(1-\eta) \frac{l}{2} ; \quad \eta|-\rangle\langle-|+(1-\eta) \frac{l}{2}\right\} \\
\sigma_{Y, \eta}:\left\{\eta|Y+\rangle\langle Y+|+(1-\eta) \frac{l}{2} ; \quad \eta|Y-\rangle\langle Y-|+(1-\eta) \frac{l}{2}\right\} \\
\eta \leq \frac{1}{\sqrt{2}} \Longrightarrow \text { Pairwise Measurability }
\end{gathered}
$$

Hollow Triangle

$$
\begin{gathered}
\sigma_{Z, \eta}:\left\{\eta|0\rangle\langle 0|+(1-\eta) \frac{l}{2} ; \quad \eta|1\rangle\langle 1|+(1-\eta) \frac{l}{2}\right\} \\
\sigma_{X, \eta}:\left\{\eta|+\rangle\langle+|+(1-\eta) \frac{l}{2} ; \quad \eta|-\rangle\langle-|+(1-\eta) \frac{l}{2}\right\} \\
\sigma_{Y, \eta}:\left\{\eta|Y+\rangle\langle Y+|+(1-\eta) \frac{l}{2} ; \quad \eta|Y-\rangle\langle Y-|+(1-\eta) \frac{l}{2}\right\} \\
\eta \leq \frac{1}{\sqrt{2}} \Longrightarrow \text { Pairwise Measurability } \\
\eta \leq \frac{1}{\sqrt{3}} \Longrightarrow \text { Triplewise Measurability }
\end{gathered}
$$

Hollow triangle measurements

Figure: A "Hollow Triangle" measurement

EPR steering

EPR steering

EPR steering

EPR steering

Quantum steering?

How to fool Bob

EPR steering

EPR steering

EPR steering

This cannot be simulated by classical mixtures of qubits.

EPR steering

Incompatible measurements + Entangled state $->$ EPR steering

Assemblage

Bob's state after $A_{a \mid x}$

$$
\rho_{a \mid x}=\frac{\operatorname{tr}_{A}\left(\rho_{A B} A_{a \mid x} \otimes I\right)}{p(a \mid x)}
$$

Assemblage

Bob's system is completely described by an assemblage:

$$
\begin{gathered}
\sigma_{a \mid X}=\operatorname{tr}_{A}\left(\rho_{A B} A_{a \mid X} \otimes I\right) \\
\rho_{a \mid X}=\frac{\sigma_{a \mid x}}{\operatorname{tr}\left(\sigma_{a \mid x}\right)}
\end{gathered}
$$

Unsteerable Assemblages

Classical mixture of single part quantum states:

$$
\rho_{\mathbf{a} \mid x}=\sum_{\lambda} \pi(\lambda \mid a, x) \rho_{\lambda}
$$

Unsteerable Assemblages

When an assemblage is unsteerable?

$$
\rho_{\mathrm{a} \mid x}=\sum_{\lambda} \pi(\lambda \mid a, x) \rho_{\lambda}
$$

Bayes Rule:

$$
\pi(\lambda \mid a, x)=\frac{p_{A}(a \mid x, \lambda) \pi(\lambda)}{p(a \mid x)}
$$

Unsteerable Assemblages

When an assemblage is unsteerable?

$$
\rho_{a \mid x}=\sum_{\lambda} \pi(\lambda \mid a, x) \rho_{\lambda}
$$

Bayes Rule:

$$
\pi(\lambda \mid a, x)=\frac{p_{A}(a \mid x, \lambda) \pi(\lambda)}{p(a \mid x)}
$$

And we have:

$$
\rho_{a \mid x}=\sum_{\lambda} \frac{p_{A}(a \mid x, \lambda) \pi(\lambda)}{p(a \mid x)} \rho_{\lambda}
$$

Unsteerable Assemblages

$$
\sigma_{\mathrm{a} \mid x}=\sum_{\lambda} \pi(\lambda) p_{A}(a \mid x, \lambda) \rho_{\lambda}
$$

Separable states are EPR local

- Only entangled states can lead to steerable assemblages

Separable states are EPR local

- Only entangled states can lead to steerable assemblages
- Entanglement certification (Even when Bob does not trust Alice)

Relations between the concepts

Nonlocality

Werner states (1989)

Some entangled states are EPR local!

Local Incompatible Measurements??

All incompatible measurements can lead to steering!

No Joint Measurability \Longleftrightarrow Useful for EPR Steering

Our contribution

The precise result

Theorem
Let $\left\{A_{a \mid x}\right\}$ be a set of incompatible measurements. There exists a quantum state $\rho_{A B}$ such that the assemblage
$\sigma_{a \mid x}=\operatorname{tr}_{A}\left(A_{a \mid x} \otimes I \rho_{A B}\right)$ is steerable.

The precise result

Theorem
Let $\left\{A_{a \mid x}\right\}$ be a set of incompatible measurements. If Alice measures $\left\{A_{a \mid x}\right\}$ on her part of a pure entangled state, the resulting assemblage is steerable.

The precise result

Theorem
Let $\left\{A_{a \mid x}\right\}$ be a set of incompatible measurements. If Alice measures $\left\{A_{a \mid x}\right\}$ on her part of a pure entangled state, the resulting assemblage is steerable.
Any number of measurements, any number of outputs, any quantum dimension.

New interpretations for Quantum Joint Measurability

We can now interpret joint measurability in terms of EPR correlations.

Applications

- Explore known results from the Steering community to get results for Joint Measurability

Applications

- Explore known results from the Steering community to get results for Joint Measurability
- Explore known results from the Joint Measurability community to get results for Steering

Applications

- Imagine that Alice wants to measure ALL projective measurements at the same time.

Applications

- Imagine that Alice wants to measure ALL projective measurements at the same time.
- Some white noise is accepted (i.e. $\eta M+(1-\eta) I)$

Applications

- Imagine that Alice wants to measure ALL projective measurements at the same time.
- Some white noise is accepted (i.e. $\eta M+(1-\eta) I)$
- How small should η be?

Applications

- Imagine that Alice wants to measure ALL projective measurements at the same time.
- Some white noise is accepted (i.e. $\eta M+(1-\eta) I)$
- How small should η be?
- Precisely $1 / 2$!

Applications

- Imagine that Alice wants to measure ALL projective measurements at the same time.
- Some white noise is accepted (i.e. $\eta M+(1-\eta) I)$
- How small should η be?
- Precisely $1 / 2$!
- Werner's model (1989) + "Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox": H. M. Wiseman et al (2006)

Applications

- Imagine that Alice wants to measure ALL projective measurements at the same time.
- Some white noise is accepted (i.e. $\eta M+(1-\eta) I)$
- How small should η be?
- Precisely $1 / 2$!
- Werner's model (1989) + "Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox": H. M. Wiseman et al (2006)
- More (tight) unsteerable states:

$$
\rho_{U N S}=\frac{1}{2} \Phi_{\theta}+\frac{1}{2} \frac{l}{2} \otimes \rho_{B, \theta}
$$

Applications

- Imagine that Alice wants to measure ALL projective measurements at the same time.
- Some white noise is accepted (i.e. $\eta M+(1-\eta) I)$
- How small should η be?
- Precisely $1 / 2$!
- Werner's model (1989) + "Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox": H. M. Wiseman et al (2006)
- More (tight) unsteerable states:

$$
\rho_{U N S}=\frac{1}{2} \Phi_{\theta}+\frac{1}{2} \frac{I}{2} \otimes \rho_{B, \theta}
$$

- $\eta \leq 5 / 12 \Longrightarrow$ all POVMs can be measured (Barrett 2002 + Quintino et al 2015 + this work -> Pusey 2015)

Applications

- Alice and Bob share a two qubit Werner state

Applications

- Alice and Bob share a two qubit Werner state
- What is the probability of Bob having an steering assemblage when Alice perform random measurements?

Applications

- Alice and Bob share a two qubit Werner state
- What is the probability of Bob having an steering assemblage when Alice perform random measurements?
- If she performs two uniformly random projective ones:

Applications

$$
p(\eta)=\sqrt{\frac{2 \eta^{2}-1}{\eta^{4}}}
$$

Busch, P. (1986) Unsharp reality and joint measurements for spin observables. Phys. Rev. D 33)

Bell Nonlocality

Bell Nonlocality

Bell Inequalities

Bell Nonlocality can be witnessed by Bell Inequalities

$$
C H S H=\left\langle A_{0} B_{0}\right\rangle+\left\langle A_{0} B_{1}\right\rangle+\left\langle A_{1} B_{0}\right\rangle-\left\langle A_{1} B_{1}\right\rangle \leq 2
$$

Bell Inequalities

Bell Nonlocality can be witnessed by Bell Inequalities

$$
\begin{gathered}
C H S H=\left\langle A_{0} B_{0}\right\rangle+\left\langle A_{0} B_{1}\right\rangle+\left\langle A_{1} B_{0}\right\rangle-\left\langle A_{1} B_{1}\right\rangle \leq 2 \\
\left\langle A_{x} B_{y}\right\rangle:=p(a=b \mid x y)-p(a \neq b \mid x y)
\end{gathered}
$$

Incompatible measurements and Bell Nonlocality

Projective Measurements

L.A. Khalfin, B.S. Tsirelson, 1985

Two dichotomic measurements

M. M. Wolf, D. Perez-Garcia, C. Fernandez, 2009

Incompatible measurements and Bell Nonlocality

- There may exist incompatible Bell local measurements ...

Incompatible measurements and Bell Nonlocality

- There may exist incompatible Bell local measurements ...
- Evidence 1: Maximally entangled state \Longrightarrow incompatible Bell local measurements

Incompatible measurements and Bell Nonlocality

- There may exist incompatible Bell local measurements ...
- Evidence 1: Maximally entangled state \Longrightarrow incompatible Bell local measurements
- Evidence 2: Hollow triangle measurements + full-correlation type cannot show bell nonlocality $\left(\left\langle A_{x} B_{y}\right\rangle:=p(a=b \mid x y)-p(a \neq b \mid x y)\right)$

Incompatible measurements and Bell Nonlocality

Conjecture
There exists a set of non Jointly Measurable measurements that can never lead to Bell inequality violation.

Conclusions

- Better understanding on the relation between quantum measurements and nonlocality

Conclusions

- Better understanding on the relation between quantum measurements and nonlocality
- Conceptually: How to interpret JM in terms of EPR steering (vice versa!)

Conclusions

- Better understanding on the relation between quantum measurements and nonlocality
- Conceptually: How to interpret JM in terms of EPR steering (vice versa!)
- Applications: Some theorems for JM can be translated to Nonlocality (vice versa!)

Open questions

- Which nontrival results can we get by exploring this connection?

Open questions

- Which nontrival results can we get by exploring this connection?
- Can all incompatible measurements lead to Bell nonlocality?

Open questions

- Which nontrival results can we get by exploring this connection?
- Can all incompatible measurements lead to Bell nonlocality?
- If our conjecture is correct, is there a simple concept that captures Bell Nonlocality for quantum measurements?

After finishing

"Joint Measurability of generalized measurements implies classicality"
R. Uola, T. Moroder, O. Gühne

Phys. Rev. Lett. 113, 160403

Thank you!

