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Abstract

This thesis investigates quantum information processing within the framework
of higher-order operations, focusing on the transformation and discrimination of
quantum channels, as well as on the role of indefinite causal order in enhancing
quantum tasks. Following a preliminary chapter on the fundamentals of higher-
order quantum operations, we present two chapters of original research.

The first research chapter addresses the transformation of unitary quantum
operations, examining the problem of converting multiple calls of an arbitrary
unitary operation into its inverse, transpose, and complex conjugate. We analyse
the performance of parallel, sequential, and indefinite-causal-order strategies,
revealing insights into the conditions under which sequential strategies can
be parallelised, and conditions where indefinite-causal-order strategies are a
useful resource. There we stablish one-to-one relationships with parallel unitary
inversion problems, to unitary estimation problems, and the seemingly unrelated
task of port-based teleportation.

The second research chapter explores quantum channel discrimination when
multiple calls are available. As with the unitary transformation analysis, we
evaluate parallel, sequential, and indefinite-causal-order strategies. Traditionally,
the field of quantum channel discrimination has focused on sets of unitary
channels that form a group and are uniformly distributed, or discrimination
tasks involving only two channels. Here, we combine a computer-assisted proof
method with semidefinite programming techniques, arising from the framework
of higher-order quantum operations, to broaden the scope of problems that
are tractable. Using our methods, we identify and present various examples
of ensembles of channels where sequential strategies offer an advantage when
compared to parallel ones.

Finally, we provide an outlook on these different research directions and list
recent contributions to other fields.
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Thesis structure

In this thesis, we reserve the theorem environment exclusively for results
originally presented in a publication of the author. This can be contrasted
to the proposition environment, which presents results proven in articles not
co-written by the author.

In Chapter 1, we present a brief introduction to quantum information and
higher-order quantum operations.

In Chapter 2, we review the required mathematical definitions for quantum
information and present the basic concepts for higher-order quantum operations.

In Chapter 3, we present original results from articles co-written by the
author, specifically focusing on the problem of transforming quantum unitary
channels. These works explore whether multiple calls of a quantum operation
can be combined to perform transformations such as inversion, transposition,
and complex conjugation, comparing the effectiveness of parallel, sequential,
and indefinite-causal-order strategies.

In Chapter 4, we present original results from articles co-written by the
author, focusing on the discrimination of quantum channels. This chapter
addresses methods for distinguishing among different quantum channels, em-
ploying techniques like semidefinite programming and computer-assisted proofs
to tackle various discrimination tasks beyond traditional symmetric cases.

In Chapter 5, we list the articles from the author published after their PhD,
but that were not included in the earlier chapters.

In Chapter 6, we summarise and reflect on the main findings of this thesis,
discuss open questions and possible future directions of the field.
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Chapter 1

Introduction

Quantum information is a branch of science that approaches quantum mechan-
ics from an information theory perspective. In this approach, key concepts in
standard information theory such as bits, channels, circuits, and input/output
relations are extended into the formalism of quantum theory. This information
view of quantum mechanics provides important basis for quantum technologies
and have already led to breakthroughs related to quantum foundations, quantum
computation, and quantum communication. Among others, celebrated results
of quantum information include the impossibility of cloning general quantum
states [1], a protocol for teleporting quantum states [2], compressing communic-
ation via quantum superdense coding [3], quantum-based cryptography [4], and
device-independent protocols based on Bell nonlocality [5].

A quantum circuit is a model for quantum computation consisting of a
sequence of quantum gates and quantum measurements. The decomposition of
quantum circuits into elementary gates establishes the basis for analysing com-
plexity in quantum computing and provides a useful framework to understand
quantum information protocols. A typical example in terms of applications is
the celebrated Shor algorithm, a quantum-circuit that can be used to factorise
integers efficiently [6].

Quantum operations form an important pillar of quantum theory and a key
point for many applications to quantum technologies. Traditionally, quantum
operations were only viewed as devices to transform quantum states, such as
quantum communication channels between distant parties or quantum gate
elements in a quantum circuit. However, quantum operations themselves can
also be subjected to transformations and, in this way, play the role of a state
by a higher-order quantum operation (HOQO). A simple example of a HOQO
is a quantum circuit with missing gates, as illustrated in Fig. 1.1.

The HOQO approach has given rise to powerful mathematical methods
to analyse quantum circuits, and problems involving quantum operations and
quantum measurements. In particular, it has allowed several such problems to be
formalised as semidefinite programs (SDP) and the symmetries that often appear
in these problems to be analysed and treated with group-representation theory
methods. Causally ordered HOQO appeared in the literature under the name
of quantum combs [7, 8], quantum strategies [9], and quantum channels with
memory [10], and have led to important results in tasks such as quantum channel
discrimination [11–13], quantum metrology [14–16], tomography on quantum
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CHAPTER 1. INTRODUCTION 11

Figure 1.1: Pictorial representation of a quantum circuit. Elements in red rep-
resent a (casually ordered) HOQO which transforms input operations. Elements
in green are the input operations, which can be plugged into and unplugged
from the circuit. Panel a) depicts a general circuit, while panel b) depicts a
parallel circuit, where the input operations can be used simultaneously.

processes [17], controlling dynamics of quantum systems [18–20], universal
transformation of unitary gates [13, 21], quantum causal-effect analysis [22] and
optimal methods to store the action of quantum operations into a quantum
memory state [23–26].

Additionally, differently from states, operations have a clear notion of input
and output. Hence, when considering transformations between two or more
operations, the concept of causal order naturally emerges. Interestingly, the
postulates of quantum mechanics do not explicitly forbid the existence of HOQO
which do not respect any definite causal order between the uses of the input
operations. This leaves room for the existence of quantum process with indefinite
causality [27, 28] and for a fruitful analysis on how causality can be understood
in quantum theory.



Chapter 2

Preliminaries

2.1 Linear algebra using the bra-ket notation and the
Choi representation

2.1.1 Vectors

As is standard in quantum information, we denote inner-product vector spaces
by H, as a reference to Hilbert spaces. All vector spaces considered in this thesis
are finite-dimensional linear vector spaces over the field of complex numbers,
that is, isomorphic to Cd for some non-zero natural number d ∈ N. Additionally,
since this work only considers finite-dimensional linear spaces, the metric space
induced by the inner product is necessarily complete, meaning all inner-product
linear spaces discussed here are trivially Hilbert spaces.

In bra-ket notation, also referred to as Dirac notation, vectors from H are
represented by “kets”, e.g, |ψ⟩ ∈ H, and linear functionals from the dual space
are represented by “bras”, e.g., ⟨ϕ| ∈ dual(H) ∼= H. The functional⟨ϕ| ∈ dual(H)
is related to the vector |ϕ⟩ ∈ H via Riesz representation lemma. That is, when
“a bra meets a ket” we have ⟨ϕ|ψ⟩ =

〈
|ϕ⟩ , |ψ⟩

〉
, with

〈
· , ·
〉

denotes the standard
inner product in Cd, which is linear in the second component and anti-linear in
the first.

The set of vectors {|i⟩}d−1
i=0 ⊆ Cd is called the computational basis and

forms an orthonormal basis for Cd, that is ⟨i|j⟩ = δij . An arbitrary vector
|ψ⟩ ∈ Cd can be decomposed as |ψ⟩ =∑i γi |i⟩, where γi = ⟨i|ψ⟩ ∈ C. We use
the star symbol ∗ to denote complex conjugation of complex numbers, that is,
γ∗i is the complex conjugation of γi ∈ C. In this way, complex conjugate of
a vector is defined via |ψ⟩∗ :=

∑
i γ

∗
i |i⟩, and its transpose —denoted by the

symbol T— via |ψ⟩T := ⟨ψ|∗ =
∑

i γi ⟨i|. This allows us to express the dual
vector corresponding to |ψ⟩ as |ψ⟩† := ⟨ψ| = |ψ⟩∗T .

2.1.2 Linear operators

In bra-ket notation, an arbitrary linear operator A : HI → HO can be written
as A =

∑
ij γij |i⟩⟨j| where γij ∈ C are complex coefficients that respect γij =

⟨i|A |j⟩. As with vectors, the complex conjugate and transposition of linear

12



CHAPTER 2. PRELIMINARIES 13

operators are defined with respect to the computational basis, that is,

A∗ :=
∑

ij

γ∗ij |i⟩⟨j| (2.1)

AT :=
∑

ij

γij

(
|i⟩⟨j|

)T
=
∑

ij

γij |j⟩⟨i| . (2.2)

With these definitions, the adjoint1 of a linear operator A can be written as
A† = A∗T =

∑
ij γ

∗
ij |j⟩⟨i|. An operator A is self-adjoint if A = A†.

The set of all operators mapping some space H to itself is denoted by
L(H), that is, writing T ∈ L(H) is a compact notation for T : H → H. Also,
notice that since our linear spaces are finite-dimensional, all linear operators
are trivially bounded.

The trace of a linear operator A ∈ L(H) is defined as tr(A) :=
∑

i ⟨i|A |i⟩ =∑
i γii. A linear operator ρ ∈ L(H) is positive semidefinite if ⟨ψ| ρ |ψ⟩ ≥ 0 for

every vector |ψ⟩ ∈ Cd. We write ρ ≥ 0 to denote that ρ is positive semidefinite,
and we write A ≥ B to indicate A − B ≥ 0. When H is a finite-dimensional
complex linear space (the case considered in this thesis), an operator A ∈ L(H)
is positive semidefinite if and only if (i) A = A† and (ii) the eigenvalues of A
are non-negative real numbers.

When analysing higher-order transformations, it is useful to represent linear
operators and linear maps in the (quantum) circuit notation. This notation is
often intuitive and sometimes self-explanatory, and will be gradually introduced
in this thesis. The advantage of this notation is that it allows for better
visualisation of mathematical equations and, in particular, clearly indicates the
domain and codomain of mathematical objects. We emphasise that the circuit
notation is more than just a “drawing” to illustrate concepts; it is instead a
rigorous mathematical description for equations involving linear operators and
linear maps.

In circuit notation2, an arbitrary linear operator ρ ∈ L(HI) is represented as

Iρ := ρ ∈ L(HI). (2.3)

Also, a bipartite linear operator σ ∈ L(HI ⊗HA) is represented as

I

A
σ := σ ∈ L(HI ⊗HA). (2.4)

In circuit notation, we also define the trace of an arbitrary operator ρ ∈ L(HI)
with another arbitrary operator M ∈ L(HI) via

Iρ M := tr(ρM) ∈ C. (2.5)

1The adjoint of a linear operator A : HI → HO is the unique operator A† : HO → HI
such that

〈
|ϕ⟩ , A |ψ⟩

〉
=

〈
A† |ϕ⟩ , |ψ⟩

〉
for every |ψ⟩ ∈ HI and every |ϕ⟩ ∈ HO.

2This work uses Quantikz [29] to draw quantum circuits with latex.
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2.1.3 Linear maps

In this work, and in some branches of quantum information, we reserve the
terminology linear map for transformations between linear operators. For
instance, a linear map C̃ : L(HI) → L(HO) is a linear transformation from
linear operators acting on HI to operators acting on HO, where I and O stands
for input and output, respectively. Here, we adopt the convention of denoting
linear maps with a tilde, so the role of each mathematical object can be easily
identified.

In circuit notation, a linear map C̃ : L(HI) → L(HO) is represented as

I OC̃ := C̃ : L(HI) → L(HO). (2.6)

Also, the application of an arbitrary map C̃ onto an operator ρ ∈ L(HI) is
denoted as

Iρ OC̃ := C̃(ρ) O (2.7)

= C̃(ρ) ∈ L(HO). (2.8)

A linear map C̃ : L(HI) → L(HO) is trace-preserving (TP) if, for any
operator ρ ∈ L(HI), we have that tr

(
C̃(ρ)

)
= tr(ρ). A linear map C̃ is positive if

for every ρ ≥ 0 we have that C̃(ρ) ≥ 0. A linear map is completely positive (CP)
if, for any linear space HA, the map C̃ ⊗ 1̃A : L(HI ⊗ HA) → L(HO ⊗ HA)
is positive, where 1̃A : L(HA) → L(HA) stands for the identity map, i.e.,
1̃A(A) = A for any A ∈ L(HA). In other words, a map C̃ is CP if, for
any positive semidefinite linear operator σ ≥ 0 in σ ∈ L(HI ⊗ HA), it holds
that [C̃ ⊗ 1̃A](σ) ≥ 0. In circuit notation, a linear map C̃ is CP if for every
σ ∈ L(HI ⊗HA) we have the implication

I

A
σ ≥ 0 =⇒

I O

A
σ

C̃
≥ 0. (2.9)

2.1.4 The Choi representation of operators and maps

It is not hard to check that linear operators satisfy the axioms of vectors
spaces; hence, linear operators can also be treated as vectors acting on a larger
linear space. Analogously, linear maps can be treated as linear operators
acting on a larger space. There are various ways to establish a one-to-one
correspondence between vectors and linear operators, and between linear maps
and linear operators. In quantum information, this one-to-one correspondence
is commonly established using the de Pillis-Choi-Jamiołkowski isomorphism [30–
32], here simply referred to as the Choi representation. This isomorphism is
defined via a linear invertible function that allows us to write linear operators
as vectors, and linear maps as linear operators.
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Definition 1 (Choi vector and Choi operator). Let A : HI → HO be a linear
operator. The Choi vector of A is a vector3 |A⟩ ∈ HI ⊗HO defined via

|A⟩ :=
∑

i

|i⟩ ⊗
(
A |i⟩

)
(2.10)

Let B̃ : L(HI) → L(HO) be a linear map. The Choi operator of B̃ is a linear
operator B ∈ L(HI ⊗HO) defined via

B :=
∑

ij

|i⟩⟨j| ⊗ B̃(|i⟩⟨j|). (2.11)

The Choi vector of the identity operator 1 ∈ L(Cd) is |1⟩ =∑i |i⟩ ⊗ |i⟩, and
it is proportional to the maximally entangled state

∣∣ϕ+d
〉
:= 1√

d

∑
i |i⟩ ⊗ |i⟩. The

Choi vector of any linear operator A can be written as |A⟩ = [1⊗A] |1⟩. Also,
for any linear map B̃, its Choi operator can be written as B =

[
1̃⊗ B̃

]
(|1⟩⟨1|).

Thus, in circuit notation, the Choi operator B of a linear map B̃ can be defined
as

I

O
B =

I I

I O

|1⟩⟨1|
B̃

. (2.12)

We also notice that linear maps C̃ : L(HI) → L(HO) that can be written as
C̃(ρ) = UρU† for some linear operator U : HI → HO have their Choi operator
given by C = |U⟩⟨U |.

In a seminal paper [32], Choi proved that a linear map C̃ is CP if and only
if its Choi operator C is positive semidefinite, that is

I OB̃ is CP ⇐⇒

I I

I O

|1⟩⟨1|
B̃

≥ 0. (2.13)

Since quantum channels and quantum instruments are necessarily CP maps,
the Choi representation is a convenient tool for representing linear maps in
quantum theory.

2.1.5 Composing maps with the link product

Let Ã : L(H1) → L(H2) and B̃ : L(H2) → L(H3) be linear maps. Since the
output space of Ã matches the input space of B̃, we can define the composition
B̃ ◦ Ã : L(H1) → L(H3). In circuit notation, this reads as

21 3Ã B̃ := 1 3B̃ ◦ Ã (2.14)

= B̃ ◦ Ã (2.15)

3Note that is also very common in the literature to use a “double-ket” notation to denote
the Choi vectors of linear operations [8, 33, 34]. In the double-ket notation one would write
|A⟩⟩ instead of |A⟩.
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Note that the composition of the maps Ã and B̃ appears reversed in circuit
notation; this occurs because in circuit notation, “time” flows from left to right,
whereas in standard function composition, the order is interpreted right-to-left.
It would maybe make sense to have circuits flowing from right to left, but since
the left-to-right circuit convention is a well established convention, we decided
to follow it.

When dealing with Choi operators, composition of linear maps can be
conveniently expressed in terms of the link product [7], an operation between
linear operators denoted by the star symbol ∗. Before presenting the formal
definition of the link product, let us examine the equations:

Map: Ã : L(H1) → L(H2) Choi: A ∈ L(H1 ⊗H2)

Map: B̃ : L(H2) → L(H3) Choi: B ∈ L(H2 ⊗H3)

Map: B̃ ◦ Ã : L(H1) → L(H3) Choi: B ∗A ∈ L(H1 ⊗H3). (2.16)

The link product is defined such that B ∗A is the Choi operator of the composed
linear map B̃ ◦ Ã, that is, B̃ ◦ Ã = B̃ ∗A. As shown in Ref. [7], this requirement
uniquely defines the operation

B ∗A := tr2
(
[11 ⊗B] [AT2 ⊗ 13]

)
, (2.17)

with (·)T2 being the partial transposition on the linear space H2.
It is also useful to consider the link product between operators that are not

defined on a bipartition. For instance, if B ∈ L(H2 ⊗H3) is the Choi operator
of some map B̃ : L(H2) → L(H3) and ρ ∈ L(H2) is a linear operator, we have
that4

B23 ∗ ρ2 := tr2

(
B23

[
ρT2 ⊗ 13

] )
(2.18)

= B̃(ρ). (2.19)

One way to understand Eq. (2.18) is to see view ρ2 as an operator acting in
H1 ⊗H2, but H1 is one dimensional.

Using analogous reasoning, if ρ,M ∈ L(H1), we have that M1 ∗ ρ1 :=
tr
(
ρTM

)
. Also, if ρ ∈ L(H1) and σ ∈ L(H3), ρ1 ∗ σ3 := (11 ⊗ σ3)(ρ1 ⊗ 13) =

ρ1 ⊗ σ3. It is also convenient to define the link product between maps, instead
of two operators. That is, for any Ã : L(H1) → L(H2), B̃ : L(H2) → L(H3),
and ρ ∈ L(H1), we define

B̃ ∗ Ã := B̃ ∗A (2.20)

and Ã ∗ ρ := A ∗ ρ.
Additionally, since the trace is cyclic, i.e., tr(AB) = tr(BA), if we keep track

of the linear spaces where the operators act and the domain and codomain
of linear maps, the link product is commutative5 and associative. That is,

4In some equations, especially when dealing with the link product, we use subscripts to
indicate the spaces where the operators act. Even if sometimes redundant, as when we write
B23 ∗ ρ3 instead of B ∗ ρ, the subscripts can help us identify the linear spaces where the
mathematical objects are defined more easily.

5It is commutative up to a permutation on the linear spaces where the operators act.
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if B23 ∗ A12 = C13, we have that A12 ∗ B23 = C31, and (C34 ∗B23) ∗ A12 =
C34 ∗ (B23 ∗A12). In circuit notation, the link product reads as following:

1 2Ã ∗ 2 3B̃ =
21 3Ã B̃ (2.21)

ρ 2 ∗ 2 3B̃ =
21 3Ã B̃ (2.22)

ρ 2 ∗ 2 M =
2

ρT M (2.23)

ρ 1 ∗ σ 3 =

ρ 1

σ 3

. (2.24)

Also, if Ã : L(H1 ⊗H2) → L(H3 ⊗H4) and B̃ : L(H4 ⊗H5) → L(H6 ⊗H7)
are linear maps with a multipartite structure, we have that

1 3

2 4

Ã ∗
4 6

5 7

B̃ =
4

1 3

2 6

5 7

Ã

B̃

(2.25)

=

1 3

2 6

5 7

B̃ ∗A . (2.26)

In a circuit-diagrammatic picture, we can see the link product as: “If the circuit
lines correspond to the same linear spaces, we connect them. If the circuit lines
correspond to different linear spaces, they should be viewed as parallel, and we
do not connect them.” Also, as shown in Eq. (2.25), the link product notation
is particularly convenient when composing linear maps whose domain and/or
codomain have a multipartite structure. Also, as we will see later, the link
product is also useful to describe “quantum circuits with open slots”.

2.2 Quantum states, channels, measurements, and
instruments

Let us now define a quanutm state.

Definition 2 (Quantum state). A linear operator ρ ∈ L(H) is a quantum state
if ρ ≥ 0 and tr(ρ) = 1.
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Deterministic transformations between quantum states are mathematically
described by quantum channels, which we define as follows:

Definition 3 (Quantum channel). A linear map C̃ : L(HI) → L(HO) is a
quantum channel if C̃ is completely positive and trace preserving (CPTP).

Quantum channels are then linear maps that transform quantum states into
other quantum states. Also, due to the CP property, they transform quantum
states into quantum states even when applied on part of a bipartite state6.

A linear operator U : HI → HO is unitary if7 U†U = UU† = 1, where 1 is
the identity operator. A quantum channel Ũ : L(HI) → L(HO) is unitary if
there exists a unitary operator U : HI → HO such that Ũ(ρ) = UρU† holds for
every linear operator ρ ∈ L(HI), Note that for any θ ∈ R, the unitary operators
eiθU represent the same unitary channel. That is,

Ũ(ρ) = eiθUρ
(
eiθU

)†
= eiθe−iθUρU† = UρU†. (2.27)

In quantum theory, it is common to assume that the unitary operators of
unitary channels have determinant one, since this can be done without loss in
generality. More precisely, for any linear operator A ∈ L(Cd), and any complex
number α ∈ C, it holds that det(αA) = αd det(A). For this reason, any unitary
channel Ũ = UρU† can be written as Ũ = U ′ρU ′† where U ′ := det(U)

1/d
U and

det(U ′) = 1. The set of unitary operators with determinant one is known as
the special unitary group and is denoted by SU(d).

A linear map C̃ : L(HI) → L(HO) is invertible if there exists a linear map
C̃−1 : L(HO) → L(HI) such that C̃−1 ◦ C̃(ρ) = ρ for every ρ ∈ L(HI) and
C̃ ◦ C̃−1(σ) = σ for every σ ∈ L(HO). If C̃ is a quantum channel with inverse
map C̃−1, it follows from Wigner’s theorem that C̃−1 is a quantum channel if
and only if C̃ is unitary [35, 36]. Thus, unitary channels represent reversible
quantum operations.

We now introduce the concept of quantum measurements, objects that allow
one to extract classical information from quantum states.

Definition 4 (Quantum measurement). A set of positive linear operators {Mi}i
is a positive operator-valued measure (POVM) if Mi ≥ 0 and

∑
iMi = 1.

Quantum measurements are described by POVMs. If we perform a measure-
ment with POVM {Mi}i on a state ρ, the probability of obtaining an outcome i
is given by

p(i|ρ, {Mi}i) = tr(ρMi) (2.28)

= ρ Mi (2.29)

6One may wonder why quantum channels are required to be completely positive but
not “completely TP”. That is, why we do not impose that if C̃ is a quantum channel, for
any linear space HA, and any bipartite linear operator ρ ∈ L(HI ⊗ HA), it holds that
tr
(
C̃ ⊗ 1̃(B)

)
= tr(B). The reason is straightforward, a linear map is completely TP if and

only if it is TP.
7In order to ensure that the operator compositions UU† and U†U are well defined we

implicitly assume that HI and HO are isomorphic.
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A quantum measurement {Mi}i can be seen as an operation that transforms
a quantum state into a classical state i, which is the label of the POVM. In
circuit notation, classical systems are often described by two parallel lines. For
instance, the circuit below transforms the quantum state ρ into a classical
symbol i with probability p(i|ρ, {Mi}i) = tr(ρMi),

ρ Mi =tr(ρMi) i (2.30)

= ρ Mi i (2.31)

Finally, we described the most general quantum transformation, mathem-
atically formalised by quantum instruments. While deterministic quantum
operations are described by quantum channels, probabilistic quantum trans-
formations are given by quantum instruments. A quantum instrument may be
viewed as an operation that takes as input a quantum state ρ and outputs a
classical outcome i and a quantum outcome ρi according to some probability
distribution.

Definition 5 (Quantum instrument). A set of linear maps
{
C̃i

}
i
is a quantum

instrument if C̃i : L(HI) → L(HO) is CP and C̃ :=
∑

i C̃i is CPTP.
Quantum probabilistic transformations are described by quantum instruments.

If we perform a quantum instrument
{
C̃i

}
i
on a state ρ, with probability

p
(
i
∣∣∣ρ,
{
C̃i

}
i

)
= tr

(
C̃i(ρ)

)
, (2.32)

we obtain the outcome i, and the quantum state ρ is transformed into

ρi =
C̃i(ρ)

tr
(
C̃i(ρ)

) . (2.33)

In circuit notation, an instrument element C̃i : L(HI) → L(HO) can be
described by

I O

C̃i , (2.34)

where the upper wire indicates the classical outcome.
Any quantum instrument can be realised by first applying a quantum

channel and then performing a quantum measurement on an auxiliary system.

That is, let C̃i : L(HI) → L(HO) be linear CP maps so that
{
C̃i

}N

i=1
is

a quantum instrument with N outcomes. We can now define the quantum
channel C̃ ′ : L(HI) → L(HO ⊗HA), where HA ∼= CN via

C̃ ′(ρ) :=

N∑

i=1

C̃i(ρ)⊗ |i⟩⟨i| . (2.35)
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It can be verified that for any linear operator ρ ∈ L(HI), we have that

C̃i(ρ) = trA

[
C̃ ′(ρ) (1O ⊗ |i⟩⟨i|A)

]
, (2.36)

that is, we always have

I O

C̃i =

|i⟩⟨i|

I O

C̃ ′ , (2.37)

Hence, if we apply the channel C̃ ′ : L(HI) → L(HO ⊗ HA) on an arbitrary
state ρ ∈ L(HI), followed by a measurement in the computational basis (i.e., a
POVM given by {|i⟩⟨i|}Ni=1) on the auxiliary system, then, with probability

p
(
i
∣∣∣ρ,
{
C̃i

}
i

)
= tr

(
C̃i(ρ)

)
, (2.38)

we obtain the outcome i, and the quantum state ρ is transformed into

ρi =
C̃i(ρ)

tr
(
C̃i(ρ)

) . (2.39)

2.3 Basic concepts for higher-order quantum information

In mathematics and computer science, a higher-order function is a function that
takes a function as an input and outputs another function. This concept plays
a key role in functional programming, a programming paradigm that inspired
higher-order quantum operations. In what follows, we introduce the concept of
linear supermaps, mathematical objects that can be interpreted as higher-order
functions, as they are linear functions acting on linear maps.

2.3.1 Linear supermaps

Linear supermaps are linear transformations between linear maps. For instance,

˜̃S :
[
L(HI) → L(HO)

]
→
[
L(HP) → L(HF)

]
(2.40)

describes a linear function that transforms an arbitrary linear map C̃ : L(HI) →
L(HI) into ˜̃S

(
C̃
)
: L(HP) → L(HF). Here, the letters P and F in HP and

HF stand for “past” and “future”, a convention used in some higher-order
quantum operation articles [37]. In this thesis, we will denote supermaps with
a double-tilde for clarity.

As we will discuss later, for any supermap ˜̃S :
[
L(HI) → L(HO)

]
→

[
L(HP) → L(HF)

]
, there exists an auxiliary linear space HA and linear maps

Ẽ : L(HP) → L(HI ⊗HA) and D̃ : L(HA ⊗HO) → L(HF) such that for every
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linear map C̃ : L(HI) → L(HO) it holds that

˜̃S(C̃) = D̃ ∗ C̃ ∗ Ẽ (2.41)

= D̃ ◦
(
C̃ ⊗ 1̃A

)
◦ Ẽ. (2.42)

For reasons that should become clear soon, the linear maps Ẽ and D̃ are
respectively referred to as encoder and decoder. Note that here, the linear maps
Ẽ and D̃ are not necessarily quantum channels, that is, they are not required
to be CP and/or TP. The fact that every linear supermap can be decomposed
as a composition of two linear maps allows us to have a convenient description
of supermaps in the circuit notation.

In a circuit notation, we can then describe an arbitrary supermap ˜̃S as

˜̃S = Ẽ ∗ D̃ =

A

P I O F
Ẽ D̃ , (2.43)

and the action of a linear supermap ˜̃S on a linear map C̃ is described by

˜̃S(C̃) =

A

P I O F
Ẽ D̃

C̃

. (2.44)

Since linear maps have a one-to-one correspondence to bipartite operators
via de Choi representation, linear supermaps have a one-to-one correspondence
with linear maps. That is, let ˜̃S : [L(HI) → L(HO)] → [L(HP) → L(HF)]

be a linear supermap and C̃ : L(HI) → L(HO) an arbitrary linear map. If
C ∈ L(HI ⊗HO), is the Choi operator of C̃, there exists a linear map S̃ : such
that S̃(C) is the Choi operator of ˜̃S(C̃). This isomorphism between linear
supermaps and linear operators is described in details in Def. 6 and pictorially
illustrated in Eq. (2.49).

Definition 6 (Choi operator of a supermap). Let CI/O : [L(HI) → L(HO)] →
[L(HI ⊗ HO)] be a (invertible) one-to-one function that transforms linear
maps Ã : [L(HI) → L(HO)] into its Choi operators A ∈ L(HI ⊗HO), that is
CI/O(Ã) = A and C−1

I/O(A) = Ã. The Choi map S̃ : L(HI ⊗HO) → L(HP ⊗HF)

of a supermap ˜̃S : [L(HI) → L(HO)] → [L(HP) → L(HF)] is defined as

S̃ := CI/O ◦ ˜̃S ◦ C−1
I/O. (2.45)

The Choi operator of a supermap ˜̃S : [L(HI) → L(HO)] → [L(HP) →
L(HF)] is a linear operator S ∈ L(HI ⊗HO ⊗HP ⊗HF) defined as

S := CIO/PF ◦ CI/O ◦ ˜̃S ◦ C−1
I/O. (2.46)
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As standard in the field, we often reorder the spaces of S as HP⊗HI⊗HO⊗HF
instead of HI ⊗HO ⊗HP ⊗HF and write SPIOF.

Using these definitions, the Choi operator of the linear map ˜̃S(C̃) is

S̃(C) =SPIOF ∗AIO (2.47)

= trIO

(
SPIOF

[
1P ⊗ CT

IO ⊗ 1F
])
. (2.48)

Direct calculation shows that, in circuit notation, the Choi operator S of a
supermap ˜̃S reads as

F

P

I

O

S =

A

P I O F

P P

O I

O O

Ẽ D̃

|1⟩⟨1|

|1⟩⟨1|

. (2.49)

In the following, we will see that representing linear supermaps by their
Choi operators will not only help us to characterise linear supermaps, but it
will greatly simplify some calculations.

2.3.2 Quantum superchannels

A linear supermap ˜̃S : [L(HI) → L(HO)] → [L(HP) → L(HF)] is TP preserving
if it transforms TP maps into TP maps. That is, if C̃ : L(HI) → L(HI) is TP,
then ˜̃S

(
C̃
)

is TP. Similarly, a linear map is CP preserving, if it transforms CP
maps into CP maps.

A linear supermap ˜̃S : [L(HI) → L(HO)] → [L(HP) → L(HF)] is completely
CP preserving if, for any linear spaces HE and any CP linear maps C̃ : L(HI ⊗
HE) → L(HO⊗HE), the map ˜̃S⊗ ˜̃1A(C̃) is CP, where ˜̃1 is the identity supermap,
i.e., ˜̃1E(B̃) = B̃ for any B̃ : L(HE) → L(HE). In circuit notation, ˜̃S = D̃ ∗ Ẽ is
completely CP preserving if for any linear map C̃ : L(HI ⊗HE) → L(HO ⊗HE)
it holds that

I O

E E

C̃ is CP =⇒

A

P I O F

E E

Ẽ D̃

C̃

is CP .

(2.50)
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We now define quantum superchannels as operations that transform quantum
channels.

Definition 7 (Quantum superchannel). A linear supermap

˜̃S : [L(HI) → L(HO)] → [L(HP) → L(HF)] (2.51)

is superchannel if ˜̃S is completely CP preserving and TP preserving.8

We will now present two fundamental result in higher-order quantum op-
erations. These results were published in 2008/2009 in a sequence papers
written by Chiribella, D’Ariano, and Perinotti [7, 8, 38], see also [9, 39, 40] for
independent related results. Propositions 1 and 2 provide a characterisation of
quantum supermaps in terms of positive semidefinite and affine constraints on
its Choi operator. Then, Proposition 3 shows that superchannels can always
be decomposed as a quantum circuit that may require entanglement with an
auxiliary system.

Proposition 1. A linear supermap

˜̃S : [L(HI) → L(HO)] → [L(HP) → L(HF)] (2.52)

with Choi operator S ∈ L(HP ⊗HI ⊗HO ⊗HF) is completely CP preserving if
and only if it is positive semidefinite, i.e., S ≥ 0.

Proposition 2. A linear supermap

˜̃S : [L(HI) → L(HO)] → [L(HP) → L(HF)] (2.53)

with Choi operator S ∈ L(HP ⊗HI ⊗HO ⊗HF) is TP preserving if and only
if it respects

trF(S) = trOF(S)⊗
1O

dO
(2.54)

trIOF(S) = trPIOF(S)
1P

dP
(2.55)

tr(S) =dPdO. (2.56)

where di is the dimension of the linear space Hi.

Proposition 3. A linear supermap

˜̃S : [L(HI) → L(HO)] → [L(HP) → L(HF)] (2.57)

8Here, it would make sense to impose that quantum channels are not only TP preserving,
but also “completely TP preserving”. That is, to impose that for any linear space HA, and
any linear map C̃ : L(HI ⊗ HA) → L(HO ⊗ HA), the map ˜̃S ⊗ ˜̃1 (

C̃
)

is TP. However, it
is not hard to show that a linear map is completely TP preserving if and only if it is TP
preserving, see e.g., Appendix C (Conditions for validity) of Ref. [37].
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is a quantum superchannel if and only if there exists an auxiliary linear space HA
and quantum channels Ẽ : L(HP) → L(HI⊗HA) and D̃ : L(HA⊗HO) → L(HF)

such that, for every linear map C̃ : L(HI) → L(HO), it holds that

˜̃S(C̃) = D̃ ∗ C̃ ∗ Ẽ (2.58)

= D̃ ◦
(
C̃ ⊗ 1̃A

)
◦ Ẽ (2.59)

=

A

P I O F
Ẽ D̃

C̃

. (2.60)

That is,

˜̃S =

A

P I O F
Ẽ D̃ , (2.61)

and the Choi operator of any superchannel ˜̃S can be decomposed as9

SPIOF = EP/IA ∗DAO/F, (2.62)

where E is the Choi operator of the encoder channel Ẽ and D is the Choi
operator of a decoder channel D̃.

Also, if ˜̃S is a superchannel, the Choi operator of ˜̃S(C̃) is given by

SPIOF ∗ CIO = EP/IA ∗ CI/O ∗DAO/F. (2.63)

The proof of Proposition 3 can be viewed as a generalisation of the Stinespring
dilation of quantum channels [8].

2.3.3 Semidefinite programming

The constraints presented in Proposition 1 are all affine or positive semidefinite
constraints. This allows us to analyse some optimisation problems involving
quantum superchannels as a semidefinite program (SDP). An SDP is an op-
timisation problem where a linear objective function is subjected to positive
semidefinite and affine constraints. This class of optimisation problems has
been intensively studied in mathematics and computer science, and in addition
to various mathematical results, powerful computational methods to solve such
problems numerically exist. [41, 42].

9To subscript P/IA in EP/IA is written in this way to remind us that E is the Choi
operator of a linear map transforming operators acting in HP to operators acting in HI ⊗HA.
In some cases we may use this notation so that we can easily identify the domain and codomain
of linear maps described by Choi operators.
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Without loss of generality, an SDP can always be written as10

given: A ∈ L
(
Cd
)
, A = A† (2.64)

B ∈ L
(
Cd′)

, B = B† (2.65)

Λ̃ : L
(
Cd
)
→ L

(
Cd′)

, Λ̃ is Hermitian preserving (2.66)
max

ρ
: tr(Aρ) (2.67)

subject to: Λ(ρ) = B (2.68)
ρ ≥ 0. (2.69)

Linear operators ρ ∈ L(Cd) that respect the constraints in Eq. (2.68) and
inequality (2.69) are called feasible points. Any feasible point in a maximisation
problem provides a lower bound for the maximum value of the linear objective
function.

Associated to any maximisation problem (including optimisation problems
that are not SDPs), there exist a minimisation dual problem. Using the Lag-
range multipliers method, it can be shown that any feasible point for the dual
minimisation problem provides an upper bound for the original maximisation
problem. Also, if the initial maximisation problem is an SDP (often referred
to as the primal problem), the dual problem is also an SDP. Finally, various
SDPs appearing in quantum information respect strong duality, which means
that the minimum obtained in the dual problem equals the maximum of the
primal problem. Later in this thesis we will make use of SDP duality to analyse
optimal transformation and discrimination between quantum channels.

2.3.4 Quantum supermeasurements (quantum testers)

We now introduce an abstract framework for performing quantum measurements
on quantum channels.

Definition 8 (Quantum supermeasurements (testers)). A set of linear operators
{Ti}i, Ti ∈ L(HI ⊗ HO) is called a tester if11 Ti ≥ 0 and for any quantum
channel C̃ : L(HI) → L(HO) with Choi operator C ∈ L(HI ⊗HO), the quantity
tr(C Ti) is a probability distribution on i.

Quantum supermeasurements are described by testers. If we perform a
supermeasurement with a tester {Ti}i on a quantum channel C̃ : L(HI) → L(HO)
with Choi operator C ∈ L(HI ⊗HO), the probability of obtaining an outcome i
is given by

p
(
i|C̃, {Ti}i

)
= tr(C Ti). (2.70)

10A linear map is Hermitian preserving if it transforms self-adjoint operators into self-adjoint
operators.

11Here, we impose Ti to be positive semidefinite because this is equivalent to writing that
tr(Tiρ) ≥ 0 for any positive semidefinite matrix ρ. This ensures that when testers are applied
to instruments they also lead to non-negative probabilities.
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As proven in Refs. [8, 43], a set of linear operators {Ti}i, Ti ∈ L(HI ⊗HO)
is tester if and only if

Ti ≥ 0 (2.71)
∑

i

Ti =σI ⊗ 1O, (2.72)

where σ ∈ L(HI) is an arbitrary quantum state.
Analogous to the realisation theorem for quantum superchannels presented

in Proposition 3, Refs. [8, 43] showed that quantum testers also have a realisation
in terms of quantum circuits. That is, a set of linear operators {Ti}i, Ti ∈
L(HI ⊗HO) is a tester if and only if there exists a linear space HA, a bipartite
quantum state ρ ∈ L(HI ⊗HA), and a POVM Mi ∈ L(HA ⊗HO) such that
Ti = ρIA ∗Mi,AO, that is

tr(CTi) =

A

I O i

ρ Mi

C̃

. (2.73)

We can then see that the act of performing measurements on quantum channels
is precisely described by quantum testers.

2.3.5 Quantum superinstruments

Probabilistic transformations between quantum channels are described by
quantum superinstruments.

Definition 9 (Quantum superinstrument). A set of linear supermaps { ˜̃Si}i is
a quantum superinstrument if ˜̃Si is completely CP preserving and ˜̃S :=

∑
i
˜̃Si

is TP preserving.
If we perform the superinstrument { ˜̃Si}i on channel C̃ and state ρ, with

probability12

p(i|ρ, { ˜̃Si}i) = tr
([ ˜̃Si

(
C̃
)]

(ρ)
)

(2.74)

=tr(Si ∗ C ∗ ρ) (2.75)

=

A

P I O Fρ 1

Ẽi D̃i

C̃

, (2.76)

12Here we use the notation ˜̃Si = Ẽi ∗ D̃i, see Eq. (2.43).
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we obtain the outcome i, and the state

ρi =

[ ˜̃Si

(
C̃
)]

(ρ)

tr
([˜̃S

(
C̃
)]

(ρ)
) (2.77)

=
Si ∗ C ∗ ρ

tr(Si ∗ C ∗ ρ) (2.78)

=

A

P I O Fρ

Ẽi D̃i

C̃

. (2.79)

Similarly to quantum instruments, any quantum superinstrument can be
realised by first applying a quantum superchannel and then performing a
quantum measurement on an auxiliary system. That is, let ˜̃Si :

[
L(HI) →

L(HO)
]
→
[
L(HP) → L(HF)

]
be linear supermaps so that

{ ˜̃Si

}N

i=1
forms

a quantum instrument with N outcomes. We can now define the quantum
superchannel S̃′ :

[
L(HI) → L(HO)

]
→
[
L(HP) → L(HF)

]
⊗ L(HA), with

HA ∼= CN , via

S̃′(C̃) :=

N∑

i=1

S̃i(C̃)⊗ |i⟩⟨i| . (2.80)

It can be verified that for any linear map C̃ ∈ L(HI) → L(HO), and any
operator ρ ∈ L(HI), we have that

[ ˜̃Si(C̃)
]
(ρ) = trA

([˜̃S′(C̃)
]
(ρ) [1O ⊗ |i⟩⟨i|A]

)
. (2.81)

If we decompose the superchannel ˜̃S′ as ˜̃S′ = Ẽ′ ∗ D̃′, with Ẽ′ and D̃′

being quantum channels, we see that every superinstrument element ˜̃Si can be
decomposed as

˜̃Si =

A

P I O F

|i⟩⟨i|
Ẽ′ D̃′ . (2.82)

Hence, a superinstrument is just a superchannel followed by a quantum meas-
urement on an auxiliary system.

2.3.6 Multipartite channels

A multipartite quantum channel is a quantum channel whose inputs and outputs
have a tensor product structure. That is, it takes k-partite quantum states as
inputs, and outputs a k-partite quantum state. In pictorial quantum circuit
notation, this is represented by a channel that has k wires as inputs and k wires
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as outputs. More rigorously, a quantum channel C̃ : L (HI) → L (HO) is a
k-partite quantum channel if the linear spaces HI and HO have a multipartite
tensor product decomposition given by HI =

⊗k
i=1 HIi and HO =

⊗k
i=1 HOi

.
In circuit notation we have

I1 O1

I2 O2

...

Ik Ok

C̃ :

k⊗

i=1

L (HIi) →
k⊗

i=1

L (HOi
) (2.83)

A simple and important class of k-partite channels is when we have k
independent channels given by C̃i : L(HIi) → L(HOi

). Such channels are
mathematically described by the tensor product of quantum channels,

k⊗

i=1

C̃i =

I1 O1

...

Ik Ok

C̃1

C̃k

(2.84)

An interesting case considered in this thesis is when all channels C̃i are identical,
i.e, C̃i = C̃1 for all i. This case admits the interpretation of k calls of the same
quantum channel C̃1.

Another very important class of multipartite channels is sequential channels,
also referred to as semilocalisable channels [44] (proven to be equivalent to semi-
causal channels in Ref. [39]), or channels with memory [10]. Before presenting
the general definition, let us start with the bipartite case. A bipartite sequential
channel is a quantum channel C̃ : L(HI1 ⊗ HI2) → L(HO1 ⊗ HO2) that can
be decomposed as a sequence of channels C̃1 : L(HI1) → L(HO1

⊗HA1
) and
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C̃2 : L(HA1
⊗HI2) → L(HO2

) as

C̃ = C̃1 ∗ C̃2 (2.85)

=

I1 O1

A1

C̃1 ∗
A1

I2 O2

C̃2 (2.86)

=
A1

I1 O1

I2 O2

C̃1

C̃2

(2.87)

=

I1 O1

I2 O2

C̃1 ∗ C̃2 , (2.88)

with Choi operator given by

C = C1
I1/O1A1

∗ C2
A1I2/O2

. (2.89)

Note that Eq. (2.89) is formally equivalent to Eq. (2.62) from Proposition 3,
which characterises a quantum superchannel. Thus, bipartite sequential channels
and superchannels may have distinct interpretations, but in practical terms,
they are mathematically equivalent.

We now present the general definition of “sequential quantum channels”.

Definition 10. A linear map C̃ :
⊗k

i=1 L (HIi) →
⊗k

i=1 L (HOi) is a k-partite
sequential quantum channel if there exists auxiliary linear spaces HAi and
quantum channels C̃1 : L(HI1) → L(HA1

⊗ HO1
), C̃k : L(HIk ⊗ HAk−1

) →
L(HOk

), C̃i : L(HIi ⊗HAi−1
) → L(HAi

⊗HOi
) for i ∈ {2, . . . , k−1}, such that

their associated Choi operators respect

C = C1
I1/O1A ∗ C2

A1I2/O2A2
∗ . . . ∗ Ck−1

Ak−2Ik/OkAk−1
∗ Ck

Ak−1Ik/Ok
. (2.90)

Sequential channels admit a relatively simple characterisation in terms of
their Choi operators. Before presenting this characterisation theorem for se-
quential k-slot superchannels we introduce the trace-and-replace map, originally
introduced in Ref. [34], which is useful for studying higher-order operations.
The trace-and-replace map is a linear map that partially traces the system in
space Hi, and replaces it by a normalised identity 1di

di
.
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Definition 11 (Trace-and-replace notation). Let C ∈ ⊗k
j=1 L(Hj) be a k-

partite linear operator. The trace-and-replace map i :
⊗k

j=1 L(Hj) →
⊗k

j=1 L(Hj)
is defined as

iC := tri(C)⊗
1i

di
(2.91)

where di is the dimension of Hi.
Notice that one should keep track of the ordering of the operators, for

instance, if C ∈ L(HI ⊗HO), IC = 1I
dI

⊗ trI[C] and OC = trO[C]⊗ 1O
dO

.

We remark that the trace-and-replace map is also equivalent to performing
a completely depolarising map on the linear space Hi. That is, let D̃ : L(Hi) →
L(Hi) be the completely depolarising map, i.e., D̃(ρ) = tr(ρ)1i

di
for any ρ ∈

L(Hi). It holds that

iC12...k =
[
1̃1 ⊗ . . .⊗ D̃i ⊗ . . .⊗ 1̃k

]
(C). (2.92)

For instance, if k = 3 and i = 2, we have that

2C =
[
1̃1 ⊗ D̃2 ⊗ 1̃3

]
(C123) = tr2(C123)⊗

12

d2
. (2.93)

Also, as mentioned before, a linear map C̃ : L(HI) → L(HI) is TP if and only
if trO(C) = 1I. Using the trace-and-replace notation, the TP condition is
equivalent to OC =IO C and tr(C) = dI.

We now present a characterisation of sequential k-partite quantum channels.
This result appeared in the literature various times, from different motivations,
but essentially the same mathematics behind, e.g., Refs. [7–10, 45]. Moreover,
as we will see it in the next subsection, this result has a very close relationship
to Proposition 5.

Proposition 4. A linear map C̃ :
⊗k

i=1 L (HIi) →
⊗k

i=1 L (HOi
) is a k-partite

sequential quantum channel if and only if its Choi operator C respects

C ≥ 0 (2.94)

Ok
C = IkOk

C (2.95)

Ok−1IkOk
C = Ik−1Ok−1IkOk

C (2.96)
... (2.97)

O1...Ik−1Ok−1IkOk
C = I1O1...Ik−1Ok−1IkOk

C (2.98)
tr(C) = dI1dI2 . . . dIk . (2.99)

2.3.7 Multi-slot superchannels

We can now define multi-slot superchannels. We start by defining a parallel k-
slot superchannel, which is a superchannel that transforms an arbitrary k-partite
quantum channel into a single quantum channel that is essentially equivalent
to a (zero-slot) superchannel.
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Definition 12 (Parallel k-slot superchannel). A linear supermap

˜̃S :

[
k⊗

i=1

L(HIi) →
k⊗

i=1

L(HOi
)

]
→
[
L(HP) → L(HF)

]
(2.100)

is a k-slot parallel superchannel if ˜̃S is completely CP preserving and for every
k-partite quantum channel

C̃ :

k⊗

i=1

L(HIi) →
k⊗

i=1

L(HOi), (2.101)

the output linear map ˜̃S(C̃) is a quantum channel.

Mathematically, a parallel k-slot superchannel is just a standard (1-slot)
superchannel with an additional tensor product structure. It follows from
Proposition 3 that ˜̃S :

[⊗k
i=1 L(HIi) →

⊗k
i=1 L(HOi

)
]
→
[
L(HP) → L(HF)

]

is a parallel multipartite quantum channel if and only if its Choi operator can
be decomposed as

SPIOF = EP/IA ∗DAO/F, (2.102)

where HI :=
⊗k

i=1 HIi and HO :=
⊗k

i=1 HOi and E and D are Choi operators
of quantum channels. Hence, a parallel superchannel can always be written as

˜̃S
PAR

=

A

I1 O1

I2 O2

P Ik Ok F

...
...

Ẽ D̃ , (2.103)

where Ẽ and D̃ are quantum channels.
Applying a parallel superchannel to k independent quantum channels results

in

˜̃S
PAR

(
k⊗

i=1

C̃i

)
=

A

I1 O1

I2 O2

P Ik Ok F

...
...

Ẽ D̃

C̃1

C̃2

C̃k

. (2.104)
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Additionally, if all channels C̃i are the same, e.g., C̃i = C̃1 for every i, a
k-slot parallel superchannel can be viewed as an operation that makes k parallel
calls to the same channel C̃1.

We now present the definition of sequential k-slot superchannels, objects that
can transform sequential k-partite channels into channels. While any k-partite
quantum channel can be “plugged” into a k-slot parallel superchannel, not all k-
partite quantum channels can be plugged into sequential k-slot superchannel. In
this sequential case, we only impose that sequential k-partite quantum channels
are transformed into channels. Since we relax the requirements, the set of
sequential superchannels is strictly larger than the set of parallel superchannels.

Sequential superchannels are also referred to in the literature as quantum
combs [7, 8], and quantum strategies [9], causally ordered process matrices [28,
34], multi-time quantum processes [45], and quantum circuits with fixed causal
order [46].

Definition 13 (Sequential k-slot superchannel). A linear supermap

˜̃S :

[
k⊗

i=1

L(HIi) →
k⊗

i=1

L(HOi
)

]
→
[
L(HP) → L(HF)

]
(2.105)

is a k-slot sequential superchannel if it is completely CP preserving and for
every k-partite sequential quantum channel

C̃ :

k⊗

i=1

L(HIi) →
k⊗

i=1

L(HOi), (2.106)

the output linear map ˜̃S(C̃) is a quantum channel.

Similarly to the single-slot case, sequential k-slot superchannels can always
be decomposed as a causally ordered circuit [7–9]. Also, a sequential k-slot
superchannel is formally equivalent to a (k+1)-partite sequential channel [7–10].
These results can be summarised in the proposition below.

Proposition 5. Let

˜̃S :

[
k⊗

i=1

L(HIi) →
k⊗

i=1

L(HOi
)

]
→
[
L(HP) → L(HF)

]
(2.107)

be a linear supermap with Choi operator S. The following three statements are
equivalent.

• ˜̃S is a k-slot superchannel.

• There exist quantum channels Ẽ1 : L(HP) → L(HI1⊗HA1
), D̃ : L(HOk

⊗HAk
) →

L(HF), and, for i ∈ {2, . . . , k−1}, Ẽi : L(HOi−1
⊗HAi−1

) → L(HIi⊗HAi
),
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such that
˜̃S = Ẽ1 ∗ Ẽ2 ∗ . . . D̃ (2.108)

=

A1 A2 A3

P I1 O1 I2 O2 I3
Ẽ1 Ẽ2 Ẽ3 . . .

Ak

Ok F
D̃

(2.109)

• The Choi operator S respects

S ≥ 0 (2.110)

FS =OkFS (2.111)

IkOkFS =Ok−1IkOkFS (2.112)

Ik−1Ok−1IkOkFS =Ok−2Ik−1Ok−1IkOkFS (2.113)
...

I1O1...IkOkFS = PI1O1...IkOkFS (2.114)
tr(S) = dPdO1

. . . dOk
. (2.115)

We now present the definition of general k-slot superchannels, objects that
can transform k independent channels into a channel. The set of channels “ac-
cepted” by general superchannels is very restricted, it only accepts independent
channels (that compose under a tensor product)13.

General superchannels were first introduced in Ref. [27] under the name of
deterministic supermaps on no-signalling channels and deterministic supermaps
on nonsignalling channels. Motivated by analysing correlations that cannot be
explained by a definite causal order, Ref. [28] introduced a bipartite version
of general superchannels as process matrices, a concept that was extended to
more parties in Ref. [34], in the latter case being equivalent to arbitrary general
superchannels. Later, in Ref. [37], general superchannels appeared under the
name of process matrices with an open past and open future, using a notation
that is closer to the one used here.

Definition 14 (General k-slot superchannel). A linear supermap

˜̃S :

[
k⊗

i=1

L(HIi) →
k⊗

i=1

L(HOi)

]
→
[
L(HP) → L(HF)

]
(2.116)

is a k-slot general superchannel if it is completely CP preserving for every
quantum channels C̃i : L(HIi) → L(HOi

), if

C̃ =

k⊗

i=1

C̃i, (2.117)

the output linear map ˜̃S(C̃) is a quantum channel.
13Due to linearity, any affine combination of independent channels would then be “accepted”

by general superchannels. Affine combinations of independent channels form what is called
non-signalling channels [27]. An alternative equivalent definition of general superchannels is
to state that these are linear supermaps transforming nonsignalling channels into channels [27].
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Similarly to quantum parallel and sequential superchannels, general su-
perchannels can also be characterised in terms of their Choi operators. The
characterisation for arbitrary k can be found in Refs. [34, 47]. When k = 2, it
can be shown that a supermap S̃ is a general 2-slot superchannel if and only if
its Choi operator S respects

S ≥ 0 (2.118)

I2O2FS =O1I2O2FS (2.119)

I1O1FS = I1O1O2FS (2.120)

PI1O1I2O2FS = PI1O1I2O2FS (2.121)

FS + O1O2FS =O1FS + O2FS (2.122)
tr(S) = dFdO1

dO2
. (2.123)

Unlike parallel and sequential superchannels, general k-slot superchannels
are not guaranteed to have a realisation in terms of quantum circuits. In various
cases, such general superchannels represent processes that do not respect any
definite causal order [27, 28]. Some general superchannels such as the quantum
switch (see Sec. 4.1.5) are examples of processes without a definite causal order
that admit an interpretation as a quantum control of sequential superchannels.
However, there exist general superchannels, such as the WOCB from Ref. [28]
that cannot be viewed as a quantum control of causal orders [46].

The interpretation of general superchannels remains an area of active de-
bate, as the physics underlying these mathematical constructs is still under
development. Although we may not yet have a “fair and concrete physical
realisation” for arbitrary general superchannels, we argue that this class of
superchannels is worthy of study. First, exploring the power and limitations of
general superchannels may lead to valuable insights into the ongoing debate
about whether general superchannels, or specific subsets thereof, could have
a “fair” physical implementation. Second, since the set of general superchan-
nels includes sequential superchannels, any identified limitations for general
superchannels (e.g., an upper bound on performing a specific task) also apply
to sequential superchannels. Moreover, the set of general superchannels is
permutation invariant over their slots, just as in the parallel case. That is,
if ˜̃S is a valid general or parallel k slot superchannel, we can define a new
valid general or parallel superchannel ˜̃S′ by permuting slots, that is, permuting
spaces HIi ⊗HOi

. Notice that property not satisfied by sequential case, since
permuting the slots may result into a non-valid sequential superchannel. This
invariance under slot permutations introduces symmetries that can significantly
simplify the solution of certain problems. Thus, even if general superchannels
are considered a mathematical abstraction, they remain a powerful tool for
identifying limitations and deriving upper bounds in tasks involving sequential
superchannels, which are within the standard quantum circuit formalism.
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3.1 The problem of transforming unitary operations

In quantum mechanics, deterministic transformations between states are rep-
resented by quantum channels and probabilistic transformations by quantum
instruments, which consist of quantum channels followed by a quantum meas-
urement. Understanding the properties of quantum channels and quantum
instruments is a standard and well established field of research with direct
impact for theoretical and applied quantum physics [52, 53]. Similarly to
states, quantum channels may also be subjected to universal transformation
in a paradigm usually referred as higher order transformations. Higher order
transformations can be formalised by supermaps [8, 38] and physically im-
plemented by means of quantum circuits. Despite its fundamental value and
potential for applications (e.g., quantum circuit designing [7], quantum process
tomography [17], testing causal hypothesis [22], channel discrimination [11],
aligning reference frames [24, 54], analysing the role of causal order [27, 28, 55]),
higher order transformations are still not well understood when compared to
quantum channels and quantum instruments.

Reversible operations play an important role in mathematics and in vari-
ous physical theories such as quantum mechanics and thermodynamics. In
quantum mechanics, reversible operations are represented by unitary operators
[35, 36]. We focus on universal transformations between reversible quantum
transformations, that is, we seek for quantum circuits which implement the de-
sired transformation for any unitary operation of some fixed dimension without
any further specific details of the input unitary operation. From a practical
perspective, this universal requirement ensures that the circuit does not require
any readjustments or modification when different inputs are considered and
the circuit implements the desired transformation even when the description
of the d-dimensional reversible operation is unknown. Note that the universal
requirement also imposes strong constraints on transformations which can be
physically realised. A well-known example which pinpoints these constraints
when considering quantum states is quantum cloning, although it is simple to
construct a quantum device that clones qubits which are promised to be in the
state |0⟩ or |1⟩, it is not possible to design a universal quantum transformation
that clones all qubit states [1]. Another interesting example can be found in
Ref. [56] where the authors consider universal not gates for qubits.

In this chapter we consider the task of transforming k ∈ N calls of an
arbitrary d-dimensional unitary channel Ũd into f̃(Ud), where f : SU(d) →
SU(d′) is a function that transforms d-dimensional operators into d′-dimensional
operators. More precisely, we seek a parallel/sequential/general k-slot quantum
superchannel

˜̃S :
[
L(Cd)⊗k → L(Cd)⊗k

]
→
[
L(Cd′

) → L(Cd′
)
]

(3.1)

such that

˜̃S
(
Ũd

⊗k
)
= f̃(Ud) (3.2)

holds for every unitary operator Ud ∈ SU(d). For instance, a relevant example
that we analyse in this chapter is the case f(Ud) = U−1

d . In this case, we seek a
superchannel that can reverse the action of a unitary channel.
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In the parallel case, we seek channels Ẽ and D̃ that satisfy

A

I1 O1

I2 O2

P Ik Ok F

...
...

Ẽ D̃

Ũd

Ũd

Ũd

=
P F

Ũ−1
d

(3.3)

In the sequential case, we seek channels Ẽi and D̃ that satisfy

A1 A2 A3

P I1 O1 I2 O2 I3
Ẽ1 Ẽ2 Ẽ3

Ũd Ũd

. . .

Ak

Ok F
D̃ =

P F
Ũ−1
d

.

(3.4)

Unlike the parallel and sequential cases, general superchannels may lack a
concrete quantum circuit realisation.

3.1.1 The probabilistic exact approach

For some particular functions f : SU(d) → SU(d) and some fixed number of calls

k, there is no k-slot superchannel ˜̃S such that ˜̃S
(
Ũd

⊗k
)
= f̃(Ud) in a determin-

istic way. In such cases, it is natural to consider probabilistic transformations,
and to seek superinstruments leading to the highest success probability. More
precisely, we seek a parallel/sequential/general k-slot superinstrument {˜̃S, ˜̃F}
such that

˜̃S
(
Ũd

⊗k
)
= p(d, k) f̃(Ud), (3.5)

where p(d, k) is the probability of success of implementing the function f using
k calls of a unitary channel Ũd. Here ˜̃S is a superinstrument element associated
to a successful implementation of the transformation, and ˜̃F is an instrument
element associated to failure of the desired transformation.1 In this approach,
our goal is then to maximise the success probability p(d, k) under the constraint
that {˜̃S, ˜̃F} is a parallel/sequential/general superchannel.

As discussed after the definition of superinstruments (Def. 2.3.5), such
probabilistic transformations can always be realised by a superchannel followed

1On this approach, the success or failure of the transformation is indicated by a classical
outcome provided by the superinstrument. In a quatum physics context, such scenarios are
sometimes referred to as probabilstic heralded.
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by a quantum measurement on some auxiliary system. For instance, when
analysing the parallel probabilistic exact case, we seek quantum channels Ẽ
and D̃ and a POVM {MS ,MF } such that

A

I1 O1

P Ik Ok F

MS

...
...

Ẽ D̃

Ũd

Ũd

= p(d, k)
P F

f̃(Ud) . (3.6)

When analysing the sequential probabilistic exact case, we seek quantum chan-
nels Ẽi and D̃ and a POVM {MS ,MF } such that

A1 A2 A3

P I1 O1 I2 O2 I3
Ẽ1 Ẽ2 Ẽ3

Ũd Ũd

. . .

Ak

Ok F

MS

D̃ = p(d, k)
P F

f̃(Ud)

(3.7)

3.1.2 The deterministic approximate approach

Another approach is to consider deterministic but nonexact transformations. A
standard way to quantify the performance in such tasks is via the fidelity between
the desired channel and the output channel. The fidelity between a quantum
channel C̃ : L(Cd) → L(Cd) and a unitary channel Ũd : L(Cd) → L(Cd) is given
by

F
(
C̃, Ũd

)
:=

1

d2
tr(C |Ud⟩⟨Ud|), (3.8)

where C and |Ud⟩⟨Ud| are the respective Choi operators of C̃ and Ũd. The
channel fidelity is known to respect various properties [57], and it is connected
to quantum state fidelity, Fρ(ρ, |ψ⟩⟨ψ|) := tr(ρ |ψ⟩⟨ψ|), via the mathematical
identity [58]

F
(
C̃, Ũd

)
=

(
(d+ 1)

∫

Haar
Fρ

(
C̃
(
V |ψ⟩⟨ψ|V †) , Ũd

(
V |ψ⟩⟨ψ|V †) ) dV − 1

)
1

d
,

(3.9)

where |ψ⟩⟨ψ| ∈ L(Cd) is an arbitrary rank-1 quantum state, e.g, we can simply
take |ψ⟩⟨ψ| = |0⟩⟨0|.

We now define the performance F (d, k) of some parallel/sequential/general
k-slot superchannel ˜̃S used to implement a function f as the worst-case fidelity,
that is,

F (d, k) := min
Ud

F
(˜̃S(Ũd

⊗k
), f̃(Ud)

)
. (3.10)
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When analysing the parallel deterministic case, we seek quantum channels
Ẽ and D̃ such that

A

I1 O1

P Ik Ok F

...
...

Ẽ D̃

Ũd

Ũd

≈ P F
f̃(Ud) . (3.11)

When analysing the sequential deterministic case, we seek quantum channels
Ẽi and D̃ such that

A1 A2 A3

P I1 O1 I2 O2 I3
Ẽ1 Ẽ2 Ẽ3

Ũd Ũd

. . .

Ak

Ok F
D̃ ≈ P F

f̃(Ud) .

(3.12)

Another natural way to quantify the performance for some k-slot super-
channel to transform Ud into f(Ud) would be to consider the average fidelity,
or some robustness based quantifier. In the next section we will see that for
the functions considered in this work, all these quantifiers are equivalent, i,e,
optimisation of all of these quantifiers leads to the same results.

3.2 Homomorphisms and antihomomorphisms

In this thesis, we reserve the theorem environment exclusively for results
originally presented in a publication of the author. This can be contrasted
to the proposition environment, which presents results proven in articles not
co-written by the author. Each theorem is presented with the original reference
as its name (e.g., Theorem 1 (Ref. [49])).

A function f : SU(d) → SU(d′) is homomorphic if f(UV ) = f(U)f(V )
holds for every U, V ∈ SU(d), that is, it preserves the group structure. Also,
f : SU(d) → SU(d′) is antihomomorphic if f(UV ) = f(V )f(U) holds for every
U, V ∈ SU(d). In this chapter we will restrict ourselves only to homomorphic
and antihomomorphic functions, since they greatly simplify the analysis.

Theorem 1 (Ref. [49]). Let f : SU(d) → SU(d′) be a homomorphic or anti-
homomorphic function and ˜̃S :

[
L(Cd)⊗k → L(Cd)⊗k

]
→
[
L(Cd′

) → L(Cd′
)
]

be a parallel/sequential/general k-slot supermap that transforms Ũd

⊗k
to f̃(Ud)

with an average fidelity given by

F (d, k) :=

∫

Haar
F
(˜̃S(Ũd

⊗k
), f̃(Ud)

)
dUd. (3.13)
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There exists a parallel/sequential/general k-slot superchannel ˜̃S′ such that

F
(˜̃S′(Ũd

⊗k
), f̃(Ud)

)
= F (d, k), ∀Ud ∈ SU(d), (3.14)

that is, the fidelities for all unitary channels Ũd are the same, hence the worst-
case fidelity is minUd

F
(˜̃S(Ũd

⊗k
), f̃(Ud)

)
= F (d, k).

Additionally, if f(U∗
d ) = f(Ud)

∗ and dUd = df(Ud), it holds that

˜̃S′(Ũd) = η f̃(Ud) + (1− η)D̃, (3.15)

where η = F (d,k)d2−1
d2−1 and D̃(ρ) := tr(ρ) 1d′ is the complete depolarising channel.

The proof of this theorem is presented in Ref. [49], and it is based on Holevo
covariance arguments [59], a method that has also appeared in the context of
higher-order quantum operations (see, e.g., Refs. [24, 55, 60, 61]).

We now state a powerful result first presented in Ref. [61], which proves2
that when dealing with homomorphic functions, quantum superchannels can be
“parallelised” without loss in performance. In particular, if f is a homomorphism,
the optimal performance of transforming k calls of Ũd into f̃(Ud) is attained by
a parallel superchannel.

Proposition 6. Let f : SU(d) → SU(d′) be a homomorphic function and
˜̃S :
[
L(Cd)⊗k → L(Cd)⊗k

]
→
[
L(Cd′

) → L(Cd′
)
]

be a general k-slot supermap

superchannel that approximately transforms Ũd

⊗k
into f̃(Ud) with worst-case

fidelity given by FGEN(d, k).

Then, there exists a parallel k-slot superchannel ˜̃SPAR such that

F
(˜̃
SPAR(Ũd

⊗k
), f̃(Ud)

)
= FGEN(d, k), ∀Ud ∈ SU(d). (3.16)

In the next section of this chapter, we restrict our attention to the case
where d = d′, that is, f is a function that maps d-dimensional unitaries to d-
dimensional unitaries. It is known that [62, 63], up to unitary equivalences, there
exist only three homomorphic functions f : SU(d) → SU(d). The trivial function
f(Ud) = 1d, the identity function f(Ud) = Ud, and the complex conjugation
function f(Ud) = U∗

d . Additionally, there exist only three antihomomorphic
functions f : SU(d) → SU(d), the trivial function f(Ud) = 1d, the transposition
function f(Ud) = UT

d , and the inverse function f(Ud) = U−1
d . We then restrict

our analysis to three non-trivial different functions, unitary complex conjugation,
unitary transposition, and unitary inversion.

3.3 Unitary complex conjugation

The possibility of transforming a single call of an arbitrary d-dimensional unitary
channel into its complex conjugate was first considered in Ref. [64], where the

2In Appendix A of Ref. [49], we revisit this result of Ref. [61] and present an alternative
proof using a notation that is closer to the one used in this thesis.
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authors showed that the optimal average fidelity is Fconj(d, k = 1) = 2
d(d−1) .

Then, Ref. [65] presented a parallel superchannel such that ˜̃S
(
Ũd

⊗(d−1)
)

= Ũ∗
d

for all d-dimensional unitary channels. That is, if k = d− 1, unitary complex
conjugation can be done in a deterministic and exact way.

In Ref. [13] we proved that when k < d− 1, any probabilistic exact super-
channel will necessarily have a zero probability of success.

Theorem 2 (Ref. [13]). Let ˜̃S be a probabilistic k-slot general superchannel
(i.e., ˜̃S is an element of a general superinstrument ) that transforms k calls of
an arbitrary unitary channel Ũd into its complex conjugate, that is,

˜̃S
(
Ũd

⊗k
)
= pconj(d, k) Ũ∗

d , ∀Ud ∈ SU(d). (3.17)

If k < d− 1, we necessarily have pconj(d, k) = 0.

In Ref. [13] we actually prove a stronger version of Thm. 2, since there
we show that even if we restricted ourselves to unitary operators Ud that are
diagonal in the computational basis, when k < d − 1, we necessarily have
pconj(d, k) = 0.

In a later work (Ref. [50]), we considered the problem of deterministic
unitary complex conjugation and obtained an optimal deterministic, nonexact
protocol for transforming k calls of an arbitrary unitary channel Ũd into its
complex conjugate Ũ∗

d .

Theorem 3 (Ref. [50]). Let ˜̃S be a deterministic k-slot general superchannel
that transforms k calls of an arbitrary unitary channel Ũd into its complex
conjugate. The maximum worst-case fidelity is

Fconj(d, k) =
k + 1

d(d− k)
. (3.18)

This maximum value is attained by the parallel superchannel ˜̃S that does not
make use of an auxiliary system. More precisely, the optimal k-slot superchannel
satisfies

˜̃S(Ũd) = D̃ ◦ Ũd

⊗k ◦ Ẽ (3.19)

=

I1 O1

P Ik Ok F

...
...Ẽ

Ũd

D̃

Ũd

(3.20)

≈ P F
Ũ∗
d

, (3.21)
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where Ẽ : L(HP) → L(HI) and D̃ : L(HO) → L(HF) are quantum channels
with Choi operators

E :=
d(
d

k+1

)API(d, k + 1) (3.22)

D :=

(
d
k

)
(

d
k+1

)AOF (d, k + 1) +
[
1O −AO(d, k)

]
⊗ σF (3.23)

with Ai(d, k) being the projector onto the antisymmetric subspace3 of Hi, where
Hi

∼= Cd⊗k and σ ∈ L(HF) is an arbitrary quantum state.

The proof of this theorem is presented in Ref. [50] and can be divided
in two parts. First, we verify that the encoder and decoder based on the
antisymmetric subspace presented in the statement of Thm. 3 attains the
fidelity Fconj(d, k) =

k+1
d(d−k) . Then, we make use of the performance operator

approach [64] to write the optimisation problem of maximising the worst-case
fidelity as an SDP. Then, we analyse the symmetries of the problem. In
particular, without loss of generality we can assume the superchannel to be
invariant under permutation of the slots, and that the Choi operator of the
superchannel respects the commutation relation

[SPIOF, UP ⊗ U⊗k
I ⊗ V ⊗k

O ⊗ VF] = 0 (3.24)

for every U, V ∈ SU(d). We then find the dual SDP problem, and the in-
volved symmetries allowed us to construct a feasible dual point and to show
that Fconj(d, k) ≤ k+1

d(d−k) , ensuring that the initial construction based on the
antisymmetric subspace is optimal.

3.4 Unitary transposition

We now consider the unitary transposition problem, that is, f(Ud) = UT . We
start by presenting the optimal probabilistic exact protocol for an arbitrary k
and d in the parallel case, result proven in Ref. [13].

Theorem 4 (Ref. [13]). Let ˜̃S be a probabilistic k-slot parallel superchannel
which transforms k calls of an arbitrary unitary channel Ũd into its transposition,
i.e.,

˜̃S
(
Ũd

)
= pPAR

trans(d, k) Ũ
T
d , ∀Ud ∈ SU(d). (3.25)

For any d, k ≥ 1, the maximal success probability is

pPAR
trans(d, k) = 1− d2 − 1

k + d2 − 1
. (3.26)

This maximal value is attained by a probabilistic port-based teleportation (PBT)
protocol [66, 67] or by a unitary storage-and-retrieve (SAR) protocol [25]. That

3A vector |ψ⟩ ∈
(
Cd

)⊗k belongs to the antisymmetric subspace of
(
Cd

)⊗k if for any
permutation π ∈ Sk of a set with k elements, we have |ψ⟩12...k = − |ψ⟩π(12...k) [53].
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is, there exist a quantum state σ, a POVM {Mi}ki=1 ∪ {MF }, and a set of
quantum channels {D̃i}ki=1 such that

P

A i

I1 O1

Ik Ok F

...
...

{Mi}

σ D̃i

Ũd

Ũd

= pPAR
trans(d, k)

P F
ŨT
d

.

(3.27)

Let us now analyse the quantum circuit in Eq. (3.27) that attains optimal
probabilistic parallel unitary transposition. First, note that the “target state”
that will be used in the system HP is not required at the moment where
the k parallel calls to the unitary operations Ũd are done. In Ref. [13], we
refer to this subset of parallel superinstruments as delayed input-state parallel
superinstruments, and they may be seen as a generalisation of the quantum su-
perinstruments used in unitary storage-and-retrieval [25], and as a probabilistic
version of the superchannels used for unitary learning [24].

As mentioned in Thm. 4, optimal parallel unitary transposition can be
obtained by a probabilistic PBT protocol as the one described in Ref. [67]. In
this case, the decoder operation D̃i is just a partial trace on all subsystems Oi,
where i ̸= i.

Another way to perform optimal parallel unitary transposition is to use
the unitary SAR protocol presented in Ref. [25]. For that, we just have to
notice that the “encoder state” σ = |ϕ⟩⟨ϕ| used in Ref. [25] respects the property
U⊗k
d ⊗1⊗k

d |ϕ⟩ = 1⊗k
d ⊗UT

d

⊗k |ϕ⟩. Hence, we can obtain a unitary transposition
simply by performing the k unitary channels Ũd on the complement wires of the
encoder state σ. Finally, we note that, while the superinstruments based on PBT
and the SAR attain the same success probability of pPAR

trans(d, k) = 1− d2−1
k+d2−1 ,

they consume different resources. As described in Ref. [25], while the PBT
approach allows a simpler decoder, the required dimension for the auxiliary
space HA for the PBT-based protocol is exponentially greater than the required
dimension of the auxiliary space for the SAR-based protocol.

We now focus our attention to deterministic parallel unitary transposition.
In Ref. [50], we show that the optimal deterministic approximation for parallel
unitary transposition can always be done via a deterministic nonexact version
of unitary SAR, also known as quantum unitary learning [24]. Also, as shown in
Ref. [24], deterministic unitary SAR can always be done via a unitary estimation
protocol. That is, we can first perform k independent calls of the unitary channel
Ũd in some quantum state σ ∈ L(HI ⊗HA) to obtain Ũd

⊗k ⊗ 1̃A(σ). Then, we

perform a quantum measurement with POVM {Mi}i on the state Ũd

⊗k⊗ 1̃A(σ)
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and obtain some outcome i, associated to some unitary U ′
d. Then, at a later

point, we simply prepare the channel f̃(U ′
d) [see Eq. (3.28)].

Later, in Ref. [51], we showed that any unitary estimation protocol with k
calls of the channel Ũd can be converted into deterministic PBT protocol with
N = k − 1 ports with the same worst-case fidelity. This connection allowed
us to relate two seemingly different problems and to understand some of their
properties, such as their asymptotic behaviour.

Theorem 5 (Ref. [50, 51]). Let ˜̃S be a deterministic k-slot parallel superchannel
which transforms k calls of an arbitrary unitary channel Ũd into its transposition.

For any dimension d and number of calls k, the optimal deterministic parallel
unitary transposition is obtained via an estimation protocol, that is, there exist
a quantum state σ, a POVM {Mi}i and a set of quantum channels {D̃i}i such
that

P

A

I1 O1

Ik Ok i F

...
...

D̃i

σ {Mi}
Ũd

Ũd

≈ P F
ŨT
d

. (3.28)

For any dimension d and number of calls k, the optimal deterministic parallel
unitary transposition respects

FPAR
trans(d, k) = FPBT(d, k + 1), (3.29)

where FPBT(d, k+1) is the optimal fidelity for the deterministic PBT protocol [66,
67].

If k = 1, the maximal worst-case fidelity over all parallel superchannels ˜̃S is
given by

FPAR
trans(d, k = 1) =

2

d2
. (3.30)

If d = 2, the maximal worst-case fidelity over all parallel superchannels ˜̃S is
given by

FPAR
trans(d = 2, k) = 1− sin2

(
π

k + 3

)
(3.31)

If k ≤ d− 1, the maximal worst-case fidelity over all parallel superchannels
˜̃S is given by

FPAR
trans(d, k ≤ d− 1) = FGEN

inv (d, k ≤ d− 1) (3.32)

=
k + 1

d2
, (3.33)
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where FGEN
inv (d, k) is the maximal worst-case fidelity over all general superchan-

nels ˜̃S for unitary inversion (see Sec. 3.5).
The asymptotic behaviour of FPAR

trans(d, k) is given by4

FPAR
trans(d, k) = 1−Θ

(
d4

k2

)
. (3.37)

Let us analyse the quantum circuit in Eq. (3.28) that attains optimal
deterministic parallel unitary transposition via a unitary estimation protocol.
As in the probabilistic case, this is also a delayed-input state protocol. Also,
in this one, just after performing the k calls of the unitary channel Ũd, we can
perform a quantum measurement with POVM {Mi}i. In a later moment, when
we desire to implement the unitary ŨT

d , we just need the classical label i.
We now consider sequential superchannels that transforms k calls of Ũd

into its transpose. In Ref. [13], we present an explicit sequential protocol
for unitary transposition that is based on the idea of “repeat until success”.
Before presenting this idea, let us first analyse the optimal probabilistic unitary
transposition protocol for the k = 1 case. The optimal protocol is in very close
relation with quantum state teleportation [2], and to gate teleportation [69].
Let

∣∣ϕ+d
〉
:= 1√

d
|i⟩ ⊗ |i⟩ be the maximally entangled state and its associated

density matrix be ϕ+d =
∣∣ϕ+d

〉〈
ϕ+d
∣∣. The clock operator Zd ∈ L(Cd) is defined

as Zd :=
∑d−1

i=0 ω
i |i⟩⟨i|, where ω := e

2π
√

−1
d , and the shift operator Xd ∈ L(Cd)

is defined as Xd :=
∑d−1

i=0 |i+d 1⟩⟨i| where the symbol +d stands for addition
modulo d. Note that when d = 2, the clock and shift operator are the Z and X
Pauli operators respectively.

A Bell measurement is a quantum measurement defined with POVM elements

Bij ∈ L(Cd ⊗ Cd) given by Bij := Zi
dX

j
d ⊗ 1d

∣∣ϕ+d
〉〈
ϕ+d
∣∣
(
Zi
dX

j
d ⊗ 1d

)†
where

i, j ∈ {0, . . . , d− 1}. Direct calculation shows that,

P

I O

F

Bij

ϕ+d

Ũd =

P

I O

F

X̃i
d Z̃j

d

ϕ+d

ϕ+d

Ũd

(3.38)

=
1

d2
P F

X̃i
d Z̃j

d
ŨT
d

(3.39)
4Here we use the big-O notation, defined as follows [68]:

f(x) = O(g(x)) ⇔ lim sup
x→∞

∣∣∣∣f(x)g(x)

∣∣∣∣ <∞, (3.34)

f(x) = Ω(g(x)) ⇔ g(x) = O(f(x)), (3.35)
f(x) = Θ(g(x)) ⇔ f(x) = O(g(x)) and f(x) = Ω(g(x)). (3.36)
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Hence, with probability p = 1
d2 , we obtain the classical outcomes i, j ∈

{0, . . . , d − 1} and the quantum channel ŨT
d ◦ Z̃j

d ◦ X̃i
d. When the classical

outcomes i = j = 0 are obtained, we are successful, i.e., Ũd is transformed
into ŨT

d . But, when i ≥ 0 or j ̸= 0, the protocol fails. We could try to do a
“correction”, that is, to apply some quantum channel in the future linear space
HF to recover the possible initial target-state we intend to input at the past
space HP. That is, we seek a quantum channel C̃ : L(HF ) → L(HF ) such that

P F
X̃i

d Z̃j
d

ŨT
d C̃ =

P F
ŨT
d

. (3.40)

The obstacle here is that the only channel C̃ that commutes with any unitary
channel ŨT

d is the identity channel. This means that if the map C̃ is independent
of Ud, there is no way to correct the protocol in case of failure.

One idea then is to look for a quantum channel C̃ that “resets” the protocol
in case of failure, that is, to look for a quantum channel C̃ such that

P F
X̃i

d Z̃j
d

ŨT
d C̃ =

P F
1̃d . (3.41)

Due to essentially the same argument as before, there is no quantum channel
C̃ such that Eq. (3.41) holds for every unitary channel Ũd. The trick now is
that, since the inverse of UT

d is U∗
d , if we have access to the channel Ũ∗

d , we can
“reset” the protocol, that is,

P F
X̃i

d Z̃j
d

ŨT
d

Ũ∗
d Z̃−j

d X̃−i
d

=
P F

1̃d .

(3.42)

The key idea now is to recall that there exists a deterministic exact superchannel
that transforms k = d− 1 calls of Ũd into Ũ∗

d [65]. Hence, when failure occurs,
we can always “reset” our protocol. This allows us to start it again in a
repeat-until-success manner.

One way to summarise this discussion is to say that with k = d calls of
Ũd we can have a success-or-draw protocol. That is, with probability p = 1

d2 ,

we transform k = d calls of an arbitrary Ũd into ŨT
d , and with probability

(1− p) = 1−
(
1− 1

d2

)
, we have a “draw”, in the sense that we simply apply the

identity operator. This allows us to reiterate the k = d protocol to obtain a
success probability that grows exponentially in k.

Theorem 6 (Ref. [13, 49]). Let ˜̃S be a probabilistic k-slot sequential super-
channel which transforms k calls of an arbitrary unitary channel Ũd into its
transposition. That is,

˜̃S
(
Ũd

)
= pSEQ

trans(d, k) Ũ
T
d , ∀Ud ∈ SU(d). (3.43)
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dimension number of calls Parallel Sequential General

d = 2 k = 2 2
5 = 0.4 0.4286 ≈ 3

7 0.4444 ≈ 4
9

d = 2 k = 3 1
2 = 0.5 0.7500 ≈ 3

4 0.9416

d = 3 k = 2 2
10 = 0.2 0.2222 ≈ 2

9 0.2500 ≈ 2
8

Table 3.1: Table with optimal success probability for transforming k calls of Ũd

into a single call of its transpose ŨT
d .

dimension number of calls Parallel Sequential General

d = 2 k = 2 cos
(
π
5

)2
= 0.6545 0.7500 ≈ 3

7 0.8249 ≈ 4
9

d = 2 k = 3 3
4 = 0.75 0.7500 ≈ 3

4 0.9416

d = 3 k = 2 1
3 ≈ 0.3333 0.4072 1

3 ≈ 0.4349

Table 3.2: Table with optimal worst-case fidelity for transforming k calls of Ũd

into a single call of its transpose ŨT
d .

For any d, k ≥ 1, the maximal success probability respects5

pSEQ
trans(d, k) ≥ 1−

(
1− 1

d2

)⌈ k
d ⌉

. (3.44)

Additionally, the worst-case fidelity when using sequential superchannels
respects

F SEQ
trans(d, k) ≥ 1−

(
1− 1

d2

)⌈ k
d ⌉

. (3.45)

Finally, in Refs. [21, 49], we show that the problem of maximising the success
probability or the worst-case fidelity for unitary transposition can be solved via
SDP. This allows us to numerically solve the problem for small values of d and
k. These results are presented in Table 3.1 and Table 3.2. From these tables, we
can see that for some values of k and d, general superchannels can outperform
sequential ones. In other words, for this task, superchannels without a definite
causal order can outperform causally ordered ones for some fixed values of d
and k.

3.5 Unitary inversion

We now consider the unitary inversion problem, that is f(Ud) = U−1. The
possibility of transforming a single call of an arbitrary d-dimensional unitary
channel into its inverse was first considered in Ref. [64], where the authors
showed that the optimal average fidelity is Finv(d, k = 1) = 2

d2 .

5Here ⌈x⌉ is the ceiling function of x ∈ R, that is ⌈x⌉ is the largest integer smaller than
or equal to x.
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Here we start by presenting the optimal probabilistic exact protocol for an
arbitrary k and d in the parallel case, as we proved in Ref. [21].

Theorem 7 (Ref. [21]). Let ˜̃S be a probabilistic k-slot parallel superchannel
which transforms k calls of an arbitrary unitary channel Ũd into its inverse.
That is,

˜̃S
(
Ũd

)
= pPAR

inv (d, k) Ũ−1
d , ∀Ud ∈ SU(d). (3.46)

If k < d− 1, we necessarily have pinv(d, k) = 0.
For any dimension d and number of calls k, the maximal success probability

respects6

1− d2 − 1

⌊ k
d−1⌋+ d2 − 1

≤ pPAR
inv (d, k) ≤ 1− d2 − 1

k + d2 − 1
. (3.47)

This maximal value is attained by a delayed-input state superinstrument.

The lower bound in this theorem is established by an explicit construction
that we now describe briefly. When the number of accessible calls k is a multiple
of d − 1, we can write k = k′(d − 1). In this case, we can obtain the inverse
of a unitary operation by transforming the k′ groups of d − 1 unitaries into
their complex conjugate using the protocol of Ref. [65]. Then, we can use the k′

calls of Ũ∗
d to implement the optimal probabilistic parallel unitary transposition

protocol presented in Thm. 4.
The upper bound is based on the following key observation. Since we know

the optimal unitary transposition protocol and that unitary complex conjugation
can be done exactly with k = d− 1 calls, the success probability for the parallel
unitary inversion protocol cannot be very high. If it were, we could combine
this unitary inversion protocol with high success of probability to the protocol
for exact unitary conjugation to obtain a protocol for unitary transposition that
is also high.

Theorem 8 (Ref. [49, 51]). Let ˜̃S be a deterministic k-slot parallel superchannel
which transforms k calls of an arbitrary unitary channel Ũd into its inverse.

For any dimension d and number of calls k, the optimal deterministic parallel
unitary transposition is obtained via an estimation protocol, that is, there exist
a quantum state σ, a POVM {Mi} and a set of quantum channels {D̃i}i such

6Here ⌊x⌋ is the floor function of x ∈ R, that is ⌊x⌋ is the smallest integer greater than or
equals x.
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that

P

A

I1 O1

Ik Ok i F

...
...

D̃i

σ {Mi}
Ũd

Ũd

≈ P F
Ũ−1
d

. (3.48)

For any dimension d and number of calls k, the optimal deterministic parallel
unitary transposition respects

FPAR
inv (d, k) = FPBT(d, k + 1), (3.49)

where FPBT(d, k+1) is the optimal fidelity for the deterministic PBT protocol [66,
67].

If d = 2, the maximal worst-case fidelity over all parallel superchannels ˜̃S is
given by

FPAR
inv (d = 2, k) = 1− sin2

(
π

k + 3

)
. (3.50)

If k ≤ d− 1, the maximal worst-case fidelity over all parallel superchannels
˜̃S is given by

FPAR
inv (d, k ≤ d− 1) = FGEN

inv (d, k ≤ d− 1) (3.51)

=
k + 1

d2
, (3.52)

where FGEN
inv (d, k) is the maximal worst-case fidelity over all general superchan-

nels ˜̃S.
The asymptotic behaviour of FPAR

inv (d, k) is given by

FPAR
inv (d, k) = 1−Θ

(
d4

k2

)
. (3.53)

We now consider sequential superchannels that transform k calls of Ũd into
its inverse. Analogously to the unitary transposition case (see the discussion just
before Thm. 6), when k = d, there exists an instrument that transforms k = d

calls of an arbitrary Ũd into Ũ−1
d with probability p = 1

d2 . With probability
(1− p) = 1−

(
1− 1

d2

)
, we have a “draw”, in the sense that we simply apply the

identity operator. This allows us to reiterate the k = d protocol to obtain a
success probability that grows exponentially in k.
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Theorem 9 (Ref. [21, 49]). Let ˜̃S be a probabilistic k-slot sequential superchan-
nel which transforms k calls of an arbitrary unitary channel Ũd into its inverse,
that is,

˜̃S
(
Ũd

)
= pSEQ

inv (d, k) Ũ−1
d , ∀Ud ∈ SU(d). (3.54)

For any d, k ≥ 1, the maximal success probability over all sequential superchan-
nels ˜̃S respects

pSEQ
inv (d, k) ≥ 1−

(
1− 1

d2

)⌊ k+1
d ⌋

. (3.55)

Also, the maximal worst-case fidelity when using sequential superchannels
respects

F SEQ
inv (d, k) ≥ 1−

(
1− 1

d2

)⌊ k+1
d ⌋

. (3.56)

Finally, in Refs. [21, 49], we show that the problem of maximising the success
probability or the worst-case fidelity for unitary inversion can be solved via an
SDP. This allows us to numerically solve the problem for small values of d and
k. These results are presented in Table 3.3 and Table 3.4. From these tables, we
can see that for some values of k and d, general superchannels can outperform
sequential ones. In other words, for this task, superchannels without a definite
causal order can outperform causally ordered ones for some fixed values of d
and k.

dimension number of calls Parallel Sequential General

d = 2 k = 2 2
5 = 0.4 0.4286 ≈ 3

7 0.4444 ≈ 4
9

d = 2 k = 3 1
2 = 0.5 0.7500 ≈ 3

4 0.9416

d = 3 k = 2 0.1111 ≈ 1
9 0.1111 ≈ 1

9 0.1111 ≈ 1
9

Table 3.3: Table with optimal success probability for transforming k calls of Ũd

into a single call of its transpose Ũ−1
d .

dimension number of calls Parallel Sequential General

d = 2 k = 2 cos
(
π
5

)2
= 0.6545 0.7500 ≈ 3

7 0.8249 ≈ 4
9

d = 2 k = 3 3
4 = 0.75 0.7500 ≈ 3

4 0.9416

d = 3 k = 2 1
3 ≈ 0.3333 1

3 ≈ 0.3333 1
3 ≈ 0.3333

Table 3.4: Table with optimal worst-case fidelity for transforming k calls of Ũd

into a single call of its transpose Ũ−1
d .



CHAPTER 3. TRANSFORMING UNITARY CHANNELS 51

3.6 The existence of success-or-draw protocols

In order to construct a sequential superinstrument for unitary transposition
and unitary inversion, we utilised the concept of success-or-draw protocols.
That is, we started with a one-slot “success-or-failure” superinstrument that
transforms a single call of Ũd into some channel f̃(Ud) with probability p and,
with probability 1 − p, we fail and obtain some other quantum channel F̃ .
Since the failure channel F̃ is not the identity channel, we cannot reiterate the
protocol in a repeat-until-success manner.

In Ref. [48] we prove that the method used for unitary transposition and
unitary inversion is actually general. That is, if there exists a “success-or-failure”
one-slot superinstrument that transforms a single call of Ũd into some channel
f̃(Ud) with probability pUd

, then there exist an ϵ > 0 and a success-or-draw
(k = d)-slot sequential superchannel that transforms k = d calls of Ũd into
f̃(Ud) with some probability ϵ pUd

, and with probability 1− ϵ pUd
, we obtain

the identity channel 1̃d.

Theorem 10 (Ref. [48]). Let ˜̃S be a probabilistic 1-slot parallel superchannel
which transforms a single of an arbitrary unitary channel Ũd into f̃(Ud) for
some arbitrary f : SU(d) → SU(d′) with probability p, that is

˜̃S
(
Ũd

)
= p f̃(Ud), ∀Ud ∈ SU(d). (3.57)

Then, there exists a (k = d)-slot sequential superinstrument {˜̃S′ , ˜̃F} and some
ϵ > 0 such that

˜̃S′
(
Ũd

⊗d
)
= ϵ pUd

f̃(Ud), ∀Ud ∈ SU(d) (3.58)

˜̃F
(
Ũd

⊗d
)
=(1− ϵ pUd

) 1̃d, ∀Ud ∈ SU(d). (3.59)

3.7 Outlook

In this chapter, we analysed the problem of transforming k calls of a unitary
channel Ũd into f̃(Ud), where f can be the complex conjugate, transposition, or
inversion. In the literature, other transformations between unitary operations
have also been considered. For instance, Refs. [60, 70] analyse the problem of
unitary cloning f(Ud) = Un where n > 1. Ref. [71] considers the problem of
unitary iteration, i.e., f(Ud) = Un

d , where n ∈ N and Un
d stands for composing

the operator Ud with itself n times. Another very relevant transformation that
is widely studied is the case of unitary controlisation [18–20], i.e., f(Ud) =
|0⟩⟨0| ⊗ 1d + eθUd |1⟩⟨1| ⊗ Ud, where θUd

∈ R.
Some works also consider scenarios where only a restricted set of superchan-

nels is available. One relevant case is a scenario where one does not have access
to an auxiliary system, case also referred to it as Markovian processes [45]. In
such scenarios, implementing functions like f(Ud) = 1d is a nontrivial relev-
ant task [72]. Also, Refs. [73, 74] consider the problem of inverting unitary
operations on a restricted class of superchannels where one can only perform
encoders and decoders on the auxiliary systems. Some other works consider the
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problem where the unitary has a Hamiltonian dynamics structure [75], that is,
U itH
d , where the self-adjoint operator H is unknown, but we have control of the

time parameter t ∈ R.
Before finishing this chapter, we would like to state the results of Refs. [76,

77]—that appeared some years after Thm. 6 and Thm. 9—which presents an
explicit sequential superchannel that attains unitary inversion and unitary trans-
position with a success probability that grows exponentially with the number
of calls k. In Ref. [76] the authors show that, for the qubit case, i.e., d = 2,
there exist a deterministic and exact sequential 4-slot superchannel such that
˜̃S
(
Ũ2

⊗4
)
= Ũ−1

2 . Then, in Ref. [77], it was shown that for any dimension d,
there exists a finite number of calls k = O(d2) and a sequential k-slot super-

channel ˜̃S such that ˜̃S
(
Ũd

⊗k
)
= Ũ−1

d . In other words, in a sequential scenario,
unitary inversion (and also unitary transposition) can be done deterministically
and exactly for some finite number of calls k.

Despite all recent progress, several open questions and open directions
remain about transformations between unitary channels. For example, how
does the situation change if we know the input state that will be applied in the
past space HP? How does the situation change when some particular knowledge
of the input channel Ũd is available. For instance, if we are given a single call of
an arbitrary channel Ũd and a quantum state |ψ⟩⟨ψ|, where |ψ⟩ is an eigenvector
of Ud, it is known that we can implement the unitary controlisation function
f(Ud) = |0⟩⟨0|⊗1d+ e

θUd |1⟩⟨1|⊗Ud. This can be contrasted with the fact that,
without extra resources, universal unitary controlisation is impossibility, even
probabilistically, for any finite number of calls k [20].



Chapter 4

Discriminating quantum channels

This chapter contains original results extracted from the following publications:

• [12] Strict Hierarchy between Parallel, Sequential, and Indefinite-Causal-
Order Strategies for Channel Discrimination
J. Bavaresco, M. Murao, M.T. Quintino
Phys. Rev. Lett. 127, 200504 (2021)
arXiv:2011.08300 [quant-ph]

• [78] Unitary channel discrimination beyond group structures: Advantages
of sequential and indefinite-causal-order strategies
J. Bavaresco, M. Murao, M.T. Quintino
J. Math. Phys. 63, 042203 (2022)
arXiv:2105.13369 [quant-ph]

• [79] The quantum switch is uniquely defined by its action on unitary
operations
Q. Dong, M.T. Quintino, A. Soeda, M. Murao
Quantum 7, 1169 (2023)
arXiv:2106.00034 [quant-ph]

4.1 The quantum channel discrimination problem and
quantum testers

4.1.1 Introduction

The discrimination of quantum operations is one of the most fundamental
tasks in quantum information science. It relates to the elementary ability to
experimentally distinguish among different quantum dynamics, which comes
into play, for example, in tasks associated to certification of quantum circuits.

A plethora of interesting results on this topic has been demonstrated over the
course of the years. For the scenario in which the task consists of the discrimina-
tion of a pair of channels using only one query, or copy, of an unknown channel,
the problem of finding the maximal probability of successful discrimination has
been related to the Helstrom measurement [80] and the diamond norm [81, 82].
In striking contrast with the problem of state discrimination – in which any
two states can only be perfectly discriminated with a finite number of copies
if they are orthogonal – it has been shown that any pair of unitary channels
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can always be perfectly discriminated for some finite number of copies [83].
Still concerning pairs of unitary channels, it has been shown that there is no
advantage of sequential strategies over parallel strategies for discrimination
with any finite number of copies [11]. However, for general channels, there can
be an advantage of sequential strategies over parallel ones, as demonstrated in
Ref. [84] with an example of two qubit-ququart entanglement breaking channels
that can be perfectly discriminated with a sequential strategy but not with a
parallel one. Additionally, during the writing process of our article Ref. [12],
Ref. [85] was uploaded to arXiv with an example of two qubit-qubit generalized
amplitude damping channels.

In a related task that consists of the discrimination of two “no-signalling
bipartite channels”, a more general strategy was constructed from the quantum
switch [86]. This strategy involved indefinite causal order, and it was shown
to not only provide an advantage over causal, i.e. sequential and parallel,
strategies, but also to allow for perfect discrimination, which would otherwise
not be achievable [14]. This phenomenon already hints that indefinite causal
order could be useful for the task of channel discrimination, similarly to how it
has proven to be advantageous for other tasks, such as the inversion of unknown
unitary operations [13] and quantum computation [87].

Additionally, we analyse a set of general strategies based on the quantum
switch [27], a two-slot general superchannel that is not a two-slot sequential
superchannel. In order to understand the quantum switch better, we show that
the quantum switch is uniquely defined by its action on unitary operators.

In this chapter, we cover the results from originally presented in Refs. [12,
78, 79].

4.1.2 The single-call channel discrimination problem

The task of minimum-error channel discrimination works as follows: With
probability pi, Alice is given an unknown quantum channel C̃i : L(HI) → L(HO),
drawn from an ensemble E = {pj , C̃j}Nj=1 that is known to her. Being allowed
to use k calls of the given channel C̃i, her task is to determine which channel
she received, by performing operations on this channel and guessing the value
of i ∈ {1, . . . , N}. This problem is equivalent to Alice extracting the “classical
information” i which is encoded in the channel C̃i. In the simplest case of
this task, when Alice is allowed to use k = 1 call of the channel she received,
the most general quantum operations that Alice could apply in her laboratory
are to send part of a potentially entangled state ρ ∈ L(HI ⊗HA) through the
channel C̃i, and jointly measure the output with a positive operator-valued
measure (POVM) {Ma},Ma ∈ L(HO ⊗HA), announcing the outcome of her
measurement as her guess. Then, her probability of correctly guessing the value
of i is given by

psucc :=

N∑

i=1

pi tr
[
(C̃i ⊗ 1̃)(ρ)Mi

]
, (4.1)
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where 1̃ is the identity map on L(HA). The maximal probability of success in
this case is then given by

p∗succ := max
{ρ,{Ma}}

psucc (4.2)

= max
{ρ,{Ma}}

N∑

i=1

pi tr
[
(C̃i ⊗ 1̃)(ρ)Mi

]
, (4.3)

where the optimisation runs over all possible strategies using quantum states ρ
and quantum POVMs {Ma}Na=1

As discussed in Sec. 2.3.4, the tester formalism allows for a simpler charac-
terisation of Alice’s strategies, who can now optimize over general testers {Ti}i
to achieve a maximal probability of successful discrimination. That is, we can
write the maximal probability of success of Eq. (4.2) as

p∗succ = max
{Ti}i

N∑

i=1

pi tr (Ti Ci) , (4.4)

there the optimisation runs over all possible testers.
Now let us analyse the more interesting case in which Alice receives two

calls of the channel Ci. With two calls, Alice has the freedom of choosing how
to concatenate these channels in order to gain more information about them.

4.1.3 Channel discrimination with two parallel calls

The first and simplest option is to apply the two calls of the unknown channel
in parallel, by sending a joint state ρ ∈ L(HI1 ⊗ HI2 ⊗ HA) through both
calls of Ci and then measuring the output with a POVM M := {Mi},Mi ∈
L(HO1 ⊗ HO2 ⊗ HA), where HI1(HI2) represents the input space of the first
(second) call of Ci, and equivalently for the output spaces. Just like in the
single slot case, a set of operators TPAR := {TPAR

i } is a parallel tester if and
only if

Ti ≥ 0 (4.5)
∑

i

Ti =σI1I2 ⊗ 1O1O2 (4.6)

tr(σI1I2) = 1. (4.7)

Also, all parallel testers have a quantum realisation in terms of states and
measurements, that is, there exist a state ρ ∈ L(HI1 ⊗HI2 ⊗HA) and a POVM
{Mi}i, Mi ∈ L(HA ⊗HO1

⊗HO2
) such that TPAR

i = ρ ∗MT
i , see Fig. 4.1(a).

4.1.4 Channel discrimination with two sequential calls

More generally, Alice could use her two calls of Ci sequentially, first sending a
state ρ ∈ L(HI1 ⊗HA1

) through the first call of Ci, next applying to the output
a general channel Ẽ : L(HO1

⊗ HA1
) → L(HI2 ⊗ HA2

), then sending part of
the output of channel Ẽ through the second call of Ci and finally measuring
the output with a POVM {Mi}i,Mi ∈ L(HO2

⊗ HA2
). As in the sequential

superchannel scenario – a sequential tester T SEQ := {T SEQ
i } can always be
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expressed as T SEQ
i = ρ ∗ E ∗MT

i , where E ∈ L(HO1
⊗ HA1

⊗ HI2 ⊗ HA2
) is

the Choi operator of map Ẽ, meaning it can always be realised by quantum
circuit [8] (see Fig. 4.1(b)). In fact, a quantum sequential tester can be seen
as a sequential superinstrument where the past space HP and future space
HF are one-dimensional, that is HP

∼= HF ∼= C. From this reasoning, it
follows that {Ti}i is a sequential tester if and only if the operators Ti ∈
L(HI1 ⊗HO1 ⊗HI2 ⊗HO2) respect

Ti ≥ 0 (4.8)

W :=
∑

i

Ti (4.9)

W =O2W (4.10)

I2O2W =O1I2O2W (4.11)
tr(W ) = dO1

dO2
. (4.12)

4.1.5 Channel discrimination with two calls without a definite
causal order and the quantum switch

Parallel and sequential strategies have long been regarded as the most general
strategies for channel discrimination. However, there is a more general strategy
for channel discrimination than the sequential one, which arises from the
following reasoning: we define general two-slot tester as the most general set of
operators TGEN = {TGEN

i } that map a pair of quantum channels, represented
by their Choi operators CA ∈ L(HI1 ⊗ HO1

) and CB ∈ L(HI2 ⊗ HO2
), to a

valid probability distribution according to p(i|CA, CB) = tr
[
(CA ⊗ CB)T

GEN
i

]
.

Note that, as in the sequential case, a general tester is equivalent to a quantum
superinstrument in which HP

∼= HF ∼= C. This is also equivalent to saying that
all tester elements are positive semidefinite, i.e., Ti ≥ 0, and that W :=

∑
i Ti

is a bipartite process matrix [28, 34], where a bipartite process matrix is the
Choi operation of a two-slot superchannel where HP ∼= HF ∼= C.

There is a special particular case of general testers that deserves special
attention, which is the quantum testers that can be realised with the aid of the
quantum switch [27]. The quantum switch is a two-slot general superchannel

˜̃S : [L(HI1 ⊗HI2) → L(HO1 ⊗HO2)] → [L(HP) → L(HF)] (4.13)

where the past and future spaces respectively decompose as HP = HPc
⊗HPt

,
and HF = HFc ⊗HFt , where HPc

∼= HFc
∼= C2. Here, the subindexes c and t

respectively correspond to “control” and “target”, for reasons that should be
clear soon. For any pair of unitary operators UA, UB ∈ SU(d), the quantum
switch superchannel ˜̃S behaves as

˜̃S
(
ŨA ⊗ ŨB

)
= Ṽ (4.14)

where

V := |0⟩⟨0|c ⊗ UBUA + |1⟩⟨1|c ⊗ UAUB . (4.15)

The operator V can be interpreted as a quantum control of the order with
which we compose the operations UA and UB. That is, for any “target state”
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Figure 4.1: Schematic representation of the realisation of every two-call (a)
parallel tester TPAR with a state ρ and a POVM M , (b) sequential tester T SEQ

with a state ρ, a channel Ẽ, and a POVM M , and (c) general tester TGEN with
a process matrix W and a POVM M .

|ψ⟩ ∈ HPt it holds that

V |0⟩c ⊗ |ψ⟩ = |0⟩ ⊗ (UBUA |ψ⟩) (4.16)
V |1⟩c ⊗ |ψ⟩ = |1⟩ ⊗ (UAUB |ψ⟩) . (4.17)

Note that, since we can set the quantum control state as to |+⟩ := |0⟩+|1⟩√
2

, the
resulting transformation can be viewed as a superposition of two different causal
orders, according to

V |+⟩c ⊗ |ψ⟩ = 1√
2

[
|0⟩ ⊗ (UBUA |ψ⟩) + |1⟩ ⊗ (UAUB |ψ⟩)

]
. (4.18)

Before proceeding, let us note that in the definition of the quantum switch
presented above, we do not specify the action of the quantum switch supermap
on non-unitary channels. Or, the action of the quantum switch supermap on
part of bipartite channels. In principle, this may lead to some ambiguity, in
the sense that, there may be different two-slot superchannels that act as the



CHAPTER 4. DISCRIMINATING QUANTUM CHANNELS 58

quantum switch on unitary operators, but have a different action on non-unitary
channels.

In Ref. [79] we prove that there is no ambiguity by defining the quantum
switch only on unitary operation.

Theorem 11 ([79]). There exists a unique completely CP preserving supermap

˜̃S : [L(HI1 ⊗HI2) → L(HO1
⊗HO2

)] → [L(HPc
⊗HPt

) → L(HPc
⊗HPt

)]
(4.19)

respecting

˜̃S
(
ŨA ⊗ ŨB

)
= Ṽ , ∀UA, UB ∈ SU(d) (4.20)

where V := |0⟩⟨0|c ⊗ UBUA + |1⟩⟨1|c ⊗ UAUB.

Moreover, this unique completely CP preserving supermap ˜̃S is also TP
preserving, thus a two-slot quantum superchannel.

We now consider general two-slot quantum testers that can be constructed
by (i) “plugging” an arbitrary quantum state ρ ∈ L(HP) in the quantum switch,
(ii) performing arbitrary unitary operations before or after any input operation,
and (iii) performing an arbitrary quantum measurement on the future space
HF. This class of strategies can also be viewed in terms of quantum switchlike
superchannels, a class of general superchannels that we discuss in appendix
E of [78]. When considering general superchannels of two slots, this class
of switchlike strategies coincides to what we define as separable testers in
Ref. [78]. The proof of this equivalence is done in Ref. [46]. We say that a
general two-slot tester {Ti}i is a separable tester when W =

∑
i Ti is a causally

separable bipartite process matrix [28, 34]. Where, a bipartite process matrix
is causally separable if it can be written as a convex combination of ordered
process matrices. And, an ordered process matrix is the Choi operator of a
sequential superchannel where HP ∼= HF ∼= C. Notice that, when considering
the (k = 2)-slot case, there are two different orders for sequential superchannel,
one order where the first slot is used before the second, and another order where
the second slot is used before the first.

We have thus defined another set of strategies, the separable testers, that
are equivalent to switchlike testers. This set of strategies contains sequential
testers, and it is contained in the set of general testers.

4.2 Rigorous upper and lower bounds via computer
assisted proofs

With our constructed unified framework for channel discrimination at hand,
we can now define the maximum probability of successful discrimination un-
der each of the four described strategies by allowing Alice to optimize over
different classes of testers. The maximum probability of successful discrim-
ination of a channel ensemble E = {pi, Ci} using two copies under strategy
S ∈ {PAR, SEQ, SEP,GEN} then reads

PS := max
{TS}

N∑

i=1

pi tr
(
TS
i C

⊗2
i

)
. (4.21)
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It is clear that these four strategies – parallel, sequential, separable, and general
– form a hierarchy since the set of testers that they define is a superset of
the previous one, in this exact order, implying the relation PPAR ≤ P SEQ ≤
P SEP ≤ PGEN for any fixed ensemble. We show that, in fact, all these three
inequalities can be strictly satisfied by explicitly calculating all PS for a specific
ensemble.

To compute the values of PS , we phrase the optimisation problems that
define it in terms of an SDP. Essentially,

given {pi, Ci}
maximize

∑

i

pi tr
(
TS
i C

⊗2
i

)

subject to {TS
i } is a tester with strategy S.

(4.22)

As we detailed in Ref. [12], the SDP presented in Eq. (4.22) can be equival-
ently solved by its dual problem

given {pi, Ci}
minimize λ

subject to pi C
⊗2
i ≤ λW

S ∀ i,
(4.23)

where W
S

lies in the dual affine1 of the set of processes WS .
SDPs can be solved by efficient numerical packages which, despite being in

practice accurate, suffer from imprecisions that come from the use of floating-
point variables. In order to overcome this issue, in Ref. [12], we developed
an algorithm for computer-assisted proofs (see [88, 89]). Using our computer-
assisted proof method, which does not make use of floating-point variables, we
obtain exact upper and lower bounds for PS , arriving at a result that has the
same mathematical rigour as an analytical proof.

4.3 Strict hierarchy between parallel, sequential, and
indefinite-causal-order strategies

We now state the main theorem presented in Ref. [12]. The proof of this result
makes use of the computer-assisted proof methods, and all code used in this
work is publicly available at Ref. [90].

Theorem 12 (Ref. [12]). In the simplest instance of a channel discrimination
task using k = 2 calls, i.e., discrimination between N = 2 qubit-qubit channels,
there exist ensembles for which the maximal probability of successful discrim-
ination of parallel, sequential, separable, and general strategies obey the strict
hierarchy

PPAR < PSEQ < PSEP < PGEN. (4.24)

In particular, for the task of discriminating the channel ensemble given by
p1 = p2 = 1

2 , an amplitude damping channel2 with damping parameter γ1 = 0.37

1Let W ⊆ L(H) be a set of linear operators. A linear operator W ∈ L(H) is an element
of the dual affine set W when tr

(
W

†
W

)
= 1 for all W ∈ W [64].

2The action of an amplitude damping channel on a qubit state is given by Ãγ(ρ) =

K0ρK
†
0 +K1ρK

†
1 , where K0 = |0⟩⟨0|+

√
1− γ |1⟩⟨1| and K1 =

√
γ |0⟩⟨1|.
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and another amplitude damping parameter γ2 = 0.87, we have

8101

10000
< PPAR <

8102

10000
<

8161

10000
< PSEQ <

8162

10000
< (4.25)

8166

10000
< PSEP <

81665

100000
<

8167

10000
< PGEN <

8168

10000
. (4.26)

4.4 Unitary quantum channel discrimination

As discussed in the preliminary Chapter 2, unitary channels are precisely the
quantum channels whose inverse map is also a quantum channel. For this
reason, unitary channels are a very important subset of quantum channels.
Since unitary quantum channels always have an inverse, some sets of unitary
channels can have a group structure. We say that a set of unitary channels
{Ũi}i form a group if

• 1̃ ∈ {Ũi}i

• If Ũ ∈ {Ũi}i, then Ũ−1 ∈ {Ũi}i

• If ŨA, ŨB ∈ {Ũi}i, then ŨB ◦ ŨA ∈ {Ũi}i.

The task of discriminating unitary channel that form a group and are
uniformly distributed can be tackled by group representation theory methods,
what often greatly simplify the problem, see e.g., cite [55, 59, 86] In Ref. [11],
it was shown that for an ensemble composed of a set of unitary channels that
forms a group and a uniform distribution, parallel strategies do not only perform
as well as sequential ones. Then, in Ref. [78] we extend this result to general
strategies, as detailed in the theorem below.

Theorem 13 (Ref. [78]). For ensembles composed of a uniform probability
distribution and a set of unitary channels that forms a group up to a global
phase, in discrimination tasks that allow for k copies, parallel strategies are
optimal, even when considering general strategies.

More specifically, let E = {pi, Ũi}i be an ensemble with N unitary channels
where pi = 1

N ∀ i and the set of channels {Ũi}i forms a group. Then, for any
number of copies k, and for every general tester {TGEN

i }, there exists a parallel
tester {TPAR

i }i, such that

1

N

N∑
i=1

tr
(
TPAR
i |Ui⟩⟨Ui|⊗k

)
=

1

N

N∑
i=1

tr
(
TGEN
i |Ui⟩⟨Ui|⊗k

)
. (4.27)

However, in Ref. [78] we show that when the unitaries do not form a group,
sequential strategies can outperform parallel ones, and general strategies can
outperform sequential ones. Moreover, if we have a set of unitaries that form a
group, but they are distributed in a non-uniform way, it is also the case that
sequential strategies can outperform parallel ones, and general strategies can
outperform sequential ones.

Theorem 14 (Ref. [78]). There exist ensembles of unitary channels for which
sequential strategies of discrimination outperform parallel strategies. Moreover,
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sequential strategies can achieve perfect discrimination in some scenarios where
the maximal probability of success of parallel strategies is strictly less than one.

Additionally, there exist ensembles of unitary channels for which general
strategies of discrimination outperform sequential strategies.

The proof of Thm. 14 is done by presenting explicit examples. The proof
that these examples are indeed correct is provided in [78] and applies the method
of computer-assisted proofs developed in Ref. [12].

Let us start with the case where the set of unitary channels does not form
a group, but the probability distribution of the ensemble is uniform. In the
following, σx, σy, and σz are the Pauli operators and H := |+⟩⟨0|+ |−⟩⟨1|, where
|±⟩ := 1√

2
(|0⟩ ± |1⟩), is the Hadamard gate.

Example 1. The ensemble composed by a uniform probability distribution
and N = 4 qubit unitary channels given by {Ui} = {1,√σx,√σy,

√
σz}, in a

discrimination task that allows for k = 2 copies, can be discriminated under
a sequential strategy with probability of success PSEQ = 1 while any parallel
strategy yields PPAR < 1.

A straightforward sequential strategy that attains perfect discrimination of
this ensemble can be constructed by first noticing that

√
σi
√
σi = σi, hence, a

simple composition of the unitary operators Ui leads to the Pauli operators,
which are perfectly discriminated with a bipartite maximally entangled state
and a joint measurement in the Bell basis. Here we note, after the publicatin
of Ref. [78], we found an alternative proof that PPAR < 1 that is not based on
SDP and does not make use of computer assisted methods [91].

Another example of this phenomenon is showcased by the ensemble {Ui} =
{1, σx, σy,

√
σz} with uniform probability distribution, which also satisfies

PPAR < P SEQ = 1 for a discrimination task with k = 2 copies. In Ref. [78],
we show that such an ensemble can actually be discriminated perfectly by a
sequential strategy that uses, on average, 1.5 copies.

The next example concerns a set of unitary channels that forms a group,
but the probability distribution of the ensemble is not uniform.

Example 2. Let {1, σx, σy, σz, H, σxH, σyH, σzH} = {Ui} be a tuple of
N = 8 unitary channels that forms a group up to a global phase, and let {pi}
be a probability distribution in which each element pi is proportional to the i-th
digit of the number π ≈ 3.1415926, that is, {pi} = { 3

31 ,
1
31 ,

4
31 , . . . ,

6
31}. For

the ensemble {pi, Ui}, in a discrimination task that allows for k = 2 copies,
sequential strategies outperform parallel strategies, i.e., PPAR < PSEQ.

In Example 2, we have set the distribution {pi} to be proportional to the
ith digit of the constant π to emphasise that the phenomenon of sequential
strategies outperforming parallel ones when the set of unitary channels forms a
group does not require a particularly well-chosen non-uniform distribution. In
practice, we have observed that with randomly generated distributions, optimal
strategies often respect PPAR < P SEQ.

In both of the aforementioned examples, general strategies do not outperform
sequential strategies. However, for the case of discrimination of unitary channels
using k = 3 copies, we show that general strategies are indeed advantageous.

Let us start again with the case where the set of unitary channels does not
form a group, but the probability distribution of the ensemble is uniform. For
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the following, we define Hy := |+y⟩⟨0|+ |−y⟩⟨1|, where |±y⟩ := 1√
2
(|0⟩ ± i |1⟩),

and HP := |+P ⟩⟨0| + |−P ⟩⟨1|, where |+P ⟩ := 1
5 (3 |0⟩ + 4 |1⟩) and |−P ⟩ :=

1
5 (4 |0⟩ − 3 |1⟩).

Example 3. For the ensemble composed by a uniform probability distribution
and N = 4 unitary channels given by {Ui} = {√σx,

√
σz,
√
Hy,

√
HP }, in a

discrimination task that allows for k = 3 copies, general strategies outperform
sequential strategies, and sequential strategies outperform parallel strategies.
Therefore, the maximal probabilities of success satisfy the strict hierarchy
PPAR < PSEQ < PGEN.

General strategies can also be advantageous for the discrimination of an
ensemble composed by a non-uniform probability distribution and a set of
unitary channels that forms a group. Let the set of unitary operators in
Example 3 be the set of generators of a group (potentially with an infinite
number of elements). Now consider the ensemble composed by such a group and
a probability distribution given by pi = 1

4 for the four values of i corresponding
to the four unitary operators which are the generators of the group, and
pi = 0 otherwise. It is straightforward to see that the maximal probabilities
of successfully discriminating this ensemble would be the same as the ones
in Example 3, hence satisfying PPAR < P SEQ < PGEN. Although somewhat
artificial, this example shows that advantages of general strategies are indeed
possible for this kind of unitary channel ensemble.

Lastly, we now analyse whether the quantum switch, or its multiple slot gen-
eralisation, referred to it as the quantum N -switch, is useful for discriminating
unitary channels. As showed in Sec. 4.3, the switchlike strategies are useful for
general channel discrimination. However, in Ref. [78] we proved that quantum
switchlike strategies are not useful for discriminating unitary channels (even
if the unitary channels do not form a group or are not uniformly distributed).
This result also holds for the multi-slot generalisation of switchlike strategies,
as defined and discussed in Ref. [78].

Theorem 15 ([78]). The action of the switch-like process on k copies of a
unitary channel can be equivalently described by a sequential process that acts
on k copies of the same unitary channel.

Consequently, in a discrimination task involving the ensemble E = {pi, Ui}i
composed by N unitary channels and some probability distribution, and that
allows for k copies, for every switch-like tester {TSL

i }, there exists a sequential
tester {TSEQ

i }i that attains the same probability of success, according to

N∑

i=1

pi tr
(
TSL
i |Ui⟩⟨Ui|⊗k

)
=

N∑

i=1

pi tr
(
TSEQ
i |Ui⟩⟨Ui|⊗k

)
. (4.28)

4.4.1 An upper bound for discriminating uniformly
distributed unitary channels

We now present an upper bound for the maximal probability of success for
discriminating a set of d-dimensional unitary channels with general strategies
when k copies are available. Our result applies to any ensemble of unitary
channels E = {pi, Ui}Ni=1 where pi = 1

N is a uniform probability distribution.
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Since general testers are the most general strategies which are consistent with a
channel discrimination task, our result constitutes a true ultimate upper bound
for discriminating unitary channels. Also, as we show later, there are particular
choices of unitary channels for which this upper bound is attainable, showing
that it cannot be improved.

Theorem 16 ([78]). Let E = {pi, Ui}Ni=1 be an ensemble composed of N d-
dimensional unitary channels and a uniform probability distribution. The
maximal probability of successful discrimination of a general strategy with k
copies is upper bounded by

PGEN ≤ 1

N
γ(d, k), (4.29)

where γ(d, k) is given by

γ(d, k) :=

(
k + d2 − 1

k

)
=

(k + d2 − 1)!

k!(d2 − 1)!
. (4.30)

4.5 Outlook

The task of discriminating and estimating quantum channels is a fundamental
question in quantum theory and has been analysed since the early stages of the
field [59]. Various works have focused on scenarios involving the discrimination
and estimation of uniformly distributed unitary channels that form a group [55,
59, 86]. The symmetries involved in this particular instance led to various
foundational and useful results in quantum theory. However, not so much was
known when analysing non-unitary channels, or even unitary channels that are
not uniformly distributed, or that do not form a group.

One reason this scenario has been less explored is that the absence of
symmetries often make the problem mathematically intractable. In this chapter,
we overcame the mathematical complexity of this non-symmetric problem by
proposing a computer-assisted method. When the dimension and number of
calls is small, this computer-assisted approach enables us to identify various
particularities of general channel discrimination by means of concrete examples.
We believe that our results can help sharpen our intuition of the task of
discriminating quantum channels beyond the very symmetric scenario.

The concrete results of the advantages of sequential and general strategies
in this work focused on discrimination tasks that use k = 2 or 3 calls. An
open question of our work is how these strategy gaps would scale with larger
values of k. The preliminary results presented here indicate that the advantage
of sequential over parallel strategies, and of general over sequential strategies,
should be even more accentuated as a higher number of calls is allowed. This
idea is supported by the intuition that the number of different ways in which one
can construct sequential strategies, as compared to parallel strategies, increases
with the number of slots k. Similarly, we expect such phenomenon to exist for
the general case. It would then be interesting to find out exactly the rate with
which these gaps grow with k.

No advantage of general strategies was found in scenarios involving dis-
crimination of unitary channels using only k = 2 calls. We conjecture that,
when considering k = 2 calls, such advantage is indeed not possible, for any
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number N of unitary channels. We also remark that, when considering k = 2
calls, Refs. [92, 93]3 prove that superchannels that preserve reversibility (i.e.,
transform unitary channels into unitary channels), are necessarily of the switch-
like form. Intuitively, it seems plausible that the optimal general strategy for
discriminating unitary channels would be one that transforms unitary channels
into unitary channels. This argument of reversibility preservation, combined
with our Theorem 15, could lead to a proof for our conjecture.

Furthermore, we also conjecture that, when considering N = 2 unitary
channels, general strategies are not advantageous, for any number of calls k. In
this scenario, it has been proven that sequential strategies cannot outperform
parallel ones [11], and we believe this to also be the case for general strategies.
The task of discriminating between two unitary channels can always be recast
as the problem of discriminating a unitary operator from the identity operator.
In the parallel case, the probability of successful discrimination has been shown
to be related to the spread of the eigenvalues of this unitary operator [83, 94].
The proof of this result explores how sequential strategies affect the spread of
the eigenvalues of unitary operators, to conclude that they cannot outperform
parallel ones. A better understanding of how general strategies affect the spread
of the eigenvalues of unitary operators could lead to a conclusive answer for
this conjecture.

3Reference [92] is an original result co-written by the author of this thesis.



Chapter 5

Contributions to other areas

In this chapter, we list the articles of the author that were published after their
PhD, but that were not included in the earlier chapters of this thesis.

5.1 Other contributions in higher-order quantum
operations

5.1.1 Higher-order quantum operations with multiple copies
of the input state

• [95] Multicopy quantum state teleportation with application to storage
and retrieval of quantum programs
F. Grosshans, M. Horodecki, M. Murao, T. Młynik, M.T. Quintino, M.
Studziński, S. Yoshida
arXiv:2409.10393 [quant-ph] (2024)

5.1.2 Understanding quantum and classical memory

• [96] Simple and maximally robust processes with no classical common-
cause or direct-cause explanation
M. Nery, M.T. Quintino, P.A. Guérin, T.O. Maciel, R. O. Vianna
Quantum 5, 538 (2021)
arXiv:2101.11630 [quant-ph]

• [97] Characterising the Hierarchy of Multi-time Quantum Processes with
Classical Memory
P. Taranto, M.T. Quintino, M. Murao, S. Milz
Quantum 8, 1328 (2024)
arXiv:2307.11905 [quant-ph]

• [91] Characterising memory in quantum channel discrimination via con-
strained separability problems
T. Ohst, S. Zhang, C.H. Nguyen, M. Plávala, M.T. Quintino
arXiv:2411.08110[quant-ph] (2024)
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5.1.3 Characterising and understanding indefinite causality

• [98] Semi-device-independent certification of indefinite causal order
J. Bavaresco, M. Araújo, Č. Brukner, M.T. Quintino
Quantum 3, 176 (2019)
arXiv:1903.10526 [quant-ph]

• [92] Consequences of preserving reversibility in quantum superchannels
W. Yokojima, M.T. Quintino, A. Soeda, M. Murao
Quantum 5, 441 (2021)
arXiv:2003.05682 [quant-ph]

• [47] Characterising transformations between quantum objects, ’complete-
ness’ of quantum properties, and transformations without a fixed causal
order
S. Milz, M.T. Quintino
Quantum 8, 1415 (2024)
arXiv:2305.01247 [quant-ph]

• [99] Exponential separation in quantum query complexity of the quantum
switch with respect to simulations with standard quantum circuits
H. Kristjánsson, T. Odake, S. Yoshida, P. Taranto, J. Bavaresco, M.T.
Quintino, M. Murao
arXiv:2409.18420 [quant-ph] (2024)

• [100] Can the quantum switch be deterministically simulated?
J. Bavaresco, S. Yoshida, T. Odake, H. Kristjánsson, P. Taranto, M.
Murao, M.T. Quintino
arXiv:2409.18202 [quant-ph] (2024)

5.1.4 Experiments involving indefinite causality

• [101] Experimental superposition of time directions
T. Strömberg, P. Schiansky, M.T. Quintino, M. Antesberger, L. Rozema,
I. Agresti, Č. Brukner, P. Walther
Phys. Rev. Research 6, 023071 (2024)
arXiv:2211.01283 [quant-ph]

• [102] Demonstration of a quantum SWITCH in a Sagnac configuration
T. Strömberg, P. Schiansky, R.W. Peterson, M.T. Quintino, P. Walther
Phys. Rev. Lett. 131, 060803 (2023)
arXiv:2211.12540 [quant-ph]

• [103] Higher-order Process Matrix Tomography of a passively-stable
Quantum SWITCH
M. Antesberger, M.T. Quintino, P. Walther, L.A. Rozema
PRX Quantum 5, 010325 (2024)
arXiv:2305.19386 [quant-ph]
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5.2 Bell nonlocality, measurement incompatibility, and
prepare-and-measure scenarios

• [104] Most incompatible measurements for robust steering tests
J. Bavaresco, M.T. Quintino, L. Guerini, T. O. Maciel, D. Cavalcanti,
M.T. Cunha
Phys. Rev. A 96, 022110 (2017)
arXiv:1704.02994 [quant-ph]

• [105] Quantum measurement incompatibility does not imply Bell nonloc-
ality
F. Hirsch, M.T. Quintino, N. Brunner
Phys. Rev. A 97, 012129 (2018)
arXiv:1707.06960 [quant-ph]

• [106] Distributed sampling, quantum communication witnesses, and meas-
urement incompatibility
L. Guerini, M.T. Quintino, L. Aolita
Phys. Rev. A 100, 042308 (2019)
arXiv:1904.08435 [quant-ph]

• [107] Device-Independent Tests of Structures of Measurement Incompat-
ibility
M.T. Quintino, C. Budroni, E. Woodhead, A. Cabello, D. Cavalcanti
Phys. Rev. Lett. 123, 180401 (2019)
arXiv:1902.05841 [quant-ph]

• [108] Bell nonlocality with a single shot
M. Araújo, F. Hirsch, M.T. Quintino
Quantum 4, 353 (2020)
arXiv:2005.13418 [quant-ph]

• [109] Certifying dimension of quantum systems by sequential projective
measurements
A. Sohbi, D. Markham, J. Kim, M.T. Quintino
Quantum 5, 472 (2021)
arXiv:2102.04608 [quant-ph]

• [110] Quantifying Quantumness of Channels Without Entanglement
H.-Y. Ku, J. Kadlec, A. Černoch, M.T. Quintino, W. Zhou, K. Lemr,
N. Lambert, A. Miranowicz, S.-L. Chen, F. Nori, Y.-N. Chen
PRX Quantum 3, 020338 (2022)
arXiv:2106.15784 [quant-ph]

• [111] Device-independent and semi-device-independent entanglement cer-
tification in broadcast Bell scenarios
E.-C. Boghiu, F. Hirsch, P.-S. Lin, M.T. Quintino, J. Bowles
SciPost Phys. Core 6, 028 (2023)
arXiv:2111.06358 [quant-ph]

• [112] Classical Cost of Transmitting a Qubit
M.J. Renner, A. Tavakoli, M.T. Quintino
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Phys. Rev. Lett. 130, 120801 (2023)
arXiv:2207.02244 [quant-ph]

• [113] The minimal communication cost for simulating entangled qubits
M.J. Renner, M.T. Quintino
Quantum 7, 1149 (2023)
arXiv:2207.12457 [quant-ph]

• [114] Logical possibilities for physics after MIP*=RE
A. Cabello, M.T. Quintino, M. Kleinmann
arXiv:2307.02920 [quant-ph] (2023)

• [115] Nonlocality activation in a photonic quantum network
L. Villegas-Aguilar, E. Polino, F. Ghafari, M.T. Quintino, K. Laverick,
I.R. Berkman, S. Rogge, L.K. Shalm, N. Tischler, E.G. Cavalcanti, S.
Slussarenko, G.J. Pryde
Nat. Commun. 15, 3112 (2024)
arXiv:2309.06501 [quant-ph]

• [116] All incompatible measurements on qubits lead to multiparticle Bell
nonlocality
M. Plávala, O. Gühne, M.T. Quintino
arXiv:2403.10564 [quant-ph] (2024)

• [117] Certifying measurement incompatibility in prepare-and-measure and
Bell scenarios
S. Egelhaaf, J. Pauwels, M.T. Quintino, R. Uola
arXiv:2407.06787 [quant-ph] (2024)

5.3 Others

• [118] Implementing positive maps with multiple copies of an input state
Q. Dong, M.T. Quintino, A. Soeda, M. Murao
Phys. Rev. A 99, 052352 (2019)
arXiv:1808.05788 [quant-ph]

https://doi.org/10.1103/PhysRevLett.130.120801
https://arxiv.org/abs/2207.02244
https://doi.org/10.22331/q-2023-10-24-1149
https://arxiv.org/abs/2207.12457
https://doi.org/10.48550/arXiv.2307.02920
https://doi.org/10.1038/s41467-024-47354-w
https://arxiv.org/abs/2309.06501
https://doi.org/10.48550/arXiv.2403.10564
https://doi.org/10.48550/arXiv.2407.06787
https://doi.org/10.1103/PhysRevA.99.052352
https://arxiv.org/abs/1808.05788


Chapter 6

Discussions

This thesis aimed to contribute to the understanding of quantum information
processing through the formalism of higher-order operations, focusing particu-
larly on the transformation and discrimination of quantum channels. In our
analyses, we covered strategies within the standard quantum circuit formalism,
here referred to as sequential superchannels. Additionally, the mathematical
framework of higher-order quantum operations allows us to analyse general
superchannels, that are in agreement with quantum theory, but are not re-
stricted to respect a definite causal order. This class of general superchannels
is also analysed in this thesis. We believe that understanding the power and
limitations of indefinite causality can contribute to the debate on the physical
interpretation and realisation of these processes without a definite causal or-
der. Also, as argued and justified in this thesis, due to its symmetric nature,
when compared to sequential case, general superchannels are often easier to
manipulate mathematically, this allows us to provide nontrivial upper bounds
to problems of interest.

In the first part of this work, we examined the transformation of unitary
operations, where we considered whether multiple calls of an arbitrary unitary
operation could be transformed into its inverse, transpose, or complex conjugate.
We have analysed parallel, sequential, and indefinite-causal-order strategies,
and identified when there is a strict hierarchy between the performance of these
different approaches. There, we have also shown that, in the deterministic
approximation case, the problem of inverting a unitary operation with k parallel
calls is equivalent to the problem of estimating a unitary operation with k
calls, and equivalent to the seemingly unrelated task of (k − 1)-port based
teleportation.

The second part of this thesis centred on the problem of quantum channel
discrimination. There, we studied strategies for discriminating among ensembles
of channels when multiple calls are available. Traditional approaches in this
area have often focused on specific cases, such as uniformly distributed unitary
channels or binary discrimination. In order to go beyond these more symmetric
cases, we introduce a method to rigorously obtain upper and lower bounds on the
maximal probability of success that is based on semidefinite programming and
computer-assisted proofs. Our approach allowed us to address a wide variety of
discrimination tasks that includes non-unitary channels, unitary channels that
do not have a group structure, and discriminating quantum channels that are not
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uniformly distributed. We hope that these results can contribute to a foundation
for future work in quantum metrology, quantum sensing, communication, query
complexity, and other applications where improved discrimination could be
useful.

We hope that this work provides a useful perspective on higher-order opera-
tions and their possible applications in quantum information science. Indefinite
causal order, as one part of this framework, may yet prove to be a valuable tool,
not only for advancing our theoretical understanding but also for guiding the
development of future quantum technologies.
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